UNIFORM CONVERGENCE OF ERGODIC LIMITS
AND APPROXIMATE SOLUTIONS

SEN-YEN SHAW

(Communicated by Paul S. Muhly)

Abstract. Let A be a densely defined closed (linear) operator, and \{A_{α}\}, \{B_{α}\} be two nets of bounded operators on a Banach space X such that \|A_{α}\| = $O(1)$, $A_{\alpha}A \subset AA_{\alpha}$, \|$A_{\alpha}A$\| = $o(1)$, and $B_{\alpha}A \subset AB_{\alpha} = I - A_{\alpha}$. Denote the domain, range, and null space of an operator T by $D(T)$, $R(T)$, and $N(T)$, respectively, and let P (resp. B) be the operator defined by $Px = \lim_{\alpha} A_{\alpha}x$ (resp. $By = \lim_{\alpha} B_{\alpha}y$) for all those $x \in X$ (resp. $y \in R(A)$) for which the limit exists. It is shown in a previous paper that $D(P) = N(A) \cap R(A)$, $R(P) = N(A)$, $D(B) = A(D(A) \cap R(A))$, $R(B) = D(A) \cap R(A)$, and that B sends each $y \in D(B)$ to the unique solution of $Ax = y$ in $R(A)$. In this paper, we prove that $D(P) = X$ and $\|P - A\| \to 0$ if and only if $\|B_{\alpha}D(B) - B\| \to 0$, if and only if $\|B_{\alpha}D(B)\| = O(1)$, if and only if $R(A)$ is closed. Moreover, when X is a Grothendieck space with the Dunford-Pettis property, all these conditions are equivalent to the mere condition that $D(P) = X$. The general result is then used to deduce uniform ergodic theorems for n-times integrated semigroups, (Y)-semigroups, and cosine operator functions.

1. Introduction

Let X be a Banach space and $B(X)$ be the set of all bounded linear operators on X. Let $A\colon D(A) \subset X \to X$ be a densely defined closed linear operator, and let \{A_{α}\} and \{B_{α}\} be two nets in $B(X)$ satisfying the conditions:

(C1) $\|A_{\alpha}\| = O(1)$, i.e., there exist M and α_0 such that $\|A_{\alpha}\| \leq M$ for $\alpha \geq \alpha_0$,

(C2) $R(B_{\alpha}) \subset D(A)$ and $B_{\alpha}A \subset AB_{\alpha} = I - A_{\alpha}$ for all α,

(C3) $R(A_{\alpha}) \subset D(A)$ and $A_{\alpha}A \subset AA_{\alpha}$, and $\|AA_{\alpha}\| \to 0$.

These two systems of operators have been employed in our earlier papers [13] and [14] to formulate an abstract mean ergodic theorem and to produce approximate solutions of the functional equation $Ax = y$.

Let P be the operator defined by $Px := \lim_{\alpha} A_{\alpha}x$ for $x \in D(P) := \{x \in X; \lim_{\alpha} A_{\alpha}x \text{ exists}\}$, and let B be the operator defined by $By := \lim_{\alpha} B_{\alpha}y$ for $y \in D(B) := \{y \in R(A); \lim_{\alpha} B_{\alpha}y \exists\}$. The following two
strong convergence theorems were proved in [13]: (i) \(P \) is a bounded linear projection with range \(R(P) = N(A) \), null space \(N(P) = R(A) \), and domain \(D(P) = N(A) \oplus R(A) = \{ x \in X ; \{ A_\alpha x \} \text{ has a weak cluster point} \} \); (ii) \(B \) is the inverse operator of the restriction \(A|R(A) \) of \(A \) to \(R(A) \); it has range \(R(B) = D(A) \cap R(A) \) and domain \(D(B) = A(D(A) \cap R(A)) = \{ y \in R(A) \}; \{ B_\alpha y \} \) has a weak cluster point}. Moreover, for any given \(y \in D(B) \), the vector \(By \) is the unique solution of the functional equation \(Ax = y \) that lies in \(R(A) \). This closed operator \(B \) is called the inner inverse of \(A \).

Actually, the convergence of \(B_\alpha y \) to \(By = (A|R(A))^{-1}y \) for \(y \in D(B) \) is seen from the following computation using \((C2)\) and \((i)\).

\[
\| B_\alpha y - By \| = \| B_\alpha ABy - By \| = \| B_\alpha A - I \| By \|
\]

\((*)\)

\[
\| B_\alpha ABy - B_\alpha y \| = \| (A_\alpha - P)By \| \to 0 .
\]

\(\{ A_\alpha \} \) is said to be strongly ergodic if \(D(P) = X \). In this case, we have \(R(A) = A(D(A) \cap X) = A(D(A) \cap [N(A) \oplus R(A)]) = A(D(A) \cap R(A)) = D(B) \).

Conversely, the equality \(D(B) = R(A) \) implies the strong ergodicity because, if not, there would be a \(z \in D(A) \setminus D(P) \) and an \(x \in D(A) \cap R(A) \) such that \(Az = Ax \), which leads to \(z = (z - x) + x \in N(A) \oplus R(A) = D(P) \), a contradiction.

The purpose of this paper is to prove the following two uniform convergence theorems for the two systems \(\{ A_\alpha \} \) and \(\{ B_\alpha \} \). Applications to concrete examples are to be given in §3.

Theorem 1. Let \(A \) be a densely defined closed linear operator in \(X \), and let \(\{ A_\alpha \} \) and \(\{ B_\alpha \} \) be two nets in \(B(X) \) which satisfy \((C1), (C2), \) and \((C3)\).

Then the following statements are equivalent:

1. \(\| A_\alpha \|D(P) - P\| \to 0 \),
2. \(D(P) = X \) and \(\| A_\alpha - P\| \to 0 \),
3. \(R(A) \) is closed,
4. \(R(A^2) \) is closed,
5. \(X = N(A) \oplus R(A) \),
6. \(\| B_\alpha \|\|R(A)\| = O(1) \),
7. \(B \) is bounded and \(\| B_\alpha \|D(B) - B\| \to 0 \).

Moreover, if \((1)\)-(7) hold, then \(D(B) = R(A^2) = R(A) \), \(\| A_\alpha - P \| \leq (M + 1) \times \| A_\alpha \| \| B \| \) and \(\| B_\alpha \|D(B) - B\| \leq (M + 1) \| A_\alpha \| \| B \| ^2 \).

A Banach space \(X \) is called a Grothendieck space if every weakly* convergent sequence in the dual space \(X^* \) is weakly convergent, and is said to have the Dunford-Pettis property if \(\langle x_n, x_n^* \rangle \to 0 \) whenever \(x_n \to 0 \) weakly in \(X \) and \(x_n^* \to 0 \) weakly in \(X^* \). Among examples of Grothendieck spaces with the Dunford-Pettis property are \(L^\infty \), \(B(s, \Sigma) \), \(H^\infty(D) \), etc. (See [7].)

Theorem 2. Let \(X \) be a Grothendieck space with the Dunford-Pettis property, and let \(A, \{ A_\alpha \} \), and \(\{ B_\alpha \} \) be as in Theorem 1. If \(\{ A_\alpha \} \) is strongly ergodic, then it is uniformly ergodic.

Thus, in this case the conditions \((1)\)-(7) all are equivalent to each of \(D(P) = X \) and \(D(B) = R(A) \). In view of the next theorem, we have another equivalent condition: \(\overline{R(A^*)} = w^* - \text{cl}(R(A^*)) \).
Theorem 3. Let X be a Grothendieck space, and let A, $\{A_\alpha\}$, and $\{B_\alpha\}$ be as in Theorem 1. Then $\{A_\alpha\}$ is strongly ergodic if and only if $\overline{R(A^*)} = w^* - \text{cl}(R(A^*))$.

2. Proof of Main Result

Proof of Theorem 1. We prove the implication $s: (2) \Rightarrow (3) \Rightarrow (4) \Rightarrow (5) \Rightarrow (2)$, $(1) \Rightarrow (3) \Rightarrow (6) \Rightarrow (1) + (7)$.

(2) \Rightarrow (3). (C3) implies that $\overline{R(A)}$ is invariant under A_α and $PA = 0$, so that $\|A_\alpha|\overline{R(A)}\| = \|(A_\alpha - P)|\overline{R(A)}\| \leq \|A_\alpha - P\| \to 0$. Hence for some α, $(A_\alpha - I)|\overline{R(A)}$ is invertible and so $\overline{R(A)} \subset R(A_\alpha - I) \subset R(A)$.

(3) \Rightarrow (4). By the open mapping theorem (cf. [15, p. 213]), there is some $m > 0$ such that each $x \in R(A)$ is equal to Ay for some $y \in D(A)$ with $\|y\| \leq m\|x\|$. Hence $\|A_\alpha x\| = \|AA_\alpha y\| \leq \|A_\alpha\|m\|x\|$, showing that $\|A_\alpha|R(A)\| \leq m\|A_\alpha A_\alpha\| \to 0$ and so $(A_\alpha - I)|R(A)$ is invertible for some α. This, together with (C2) and (C3), implies that $R(A) = (A_\alpha - I)AD(A) = A(A_\alpha - I)D(A) \subset D(D(A) \cap R(A)) = R(A^2)$. Hence $R(A^2) = R(A)$ and is closed.

(4) \Rightarrow (5). If $x \in D(A)$, then $Ax = \lim\{A_\alpha x - A(A_\alpha - I)x\} = \lim (A_\alpha - I)x \in \overline{R(A^2)} = R(A^2)$. This shows that $R(A) = R(A^2)$ is closed and $D(A) \subset N(A) \cap R(A)$. Next, let $x \in X$, and let $\{x_n\}$ be a sequence in $D(A)$ such that $x_n \to x$. Then $A_\alpha x \in D(A)$ and $(A_\alpha - I)x = \lim_{n \to \infty} (A_\alpha - I)x_n \in \overline{R(A)} = R(A)$ so that $x = A_\alpha x - (A_\alpha - I)x \in D(A) + R(A) \subset N(A) + R(A)$. Hence $X = N(A) + R(A)$. To see that this is a direct sum, let $x \in N(A) \cap R(A)$. Then there is a y such that $Ay = x \in N(A) \subset N(A_\alpha - I)$ for all α. But then $x = A_\alpha x = A_\alpha Ay \to 0$.

(5) \Rightarrow (2). The closedness of A and assumption (5) imply $R(A)$ is closed (see [16, p. 217]). Then, as was shown in (3) \Rightarrow (4), we have $\|(A_\alpha - P)|R(A)\| = \|A_\alpha|R(A)\| \leq m\|A_\alpha A_\alpha\| \to 0$. Because $(A_\alpha - P)|N(A) = 0$, it follows that $\|A_\alpha - P\| \to 0$.

(1) \Rightarrow (3). Since $A_\alpha A \subset AA_\alpha$, the space $D(P) = N(A) \oplus \overline{R(A)}$ is invariant under A_α, and $A(D(P))$ is a densely defined closed operator in $D(P)$. Applying (2) \Rightarrow (5) to $\{A_\alpha|D(P)\}$ and $A|D(P)$, we infer that $D(P) = N(A|D(P)) \oplus R(A|D(P))$. Since $N(A|D(P)) = N(A)$ and $R(A|D(P)) \subset R(A)$, it follows from the two expressions of $D(P)$ that $\overline{R(A)} = R(A|D(P))$ and hence $\overline{R(A)} = R(A)$.

(3) \Rightarrow (6). If $R(A)$ is closed, then as shown in (3) \Rightarrow (4), we have $R(A^2) = \overline{R(A)}$, so that $D(B) = A(D(A) \cap R(A)) = R(A^2) = R(A)$ is closed. Since $B_\alpha y \to By$ for all $y \in D(B)$, the uniform boundedness principle implies (6).

(6)\Rightarrow (1) + (7). (6) implies that B is bounded and hence $R(A|D(P)) = A(D(A) \cap \overline{R(A)}) = D(B)$ is closed. An application of (3) \Rightarrow (2) to $\{A_\alpha|D(P)\}$ asserts that $\|A_\alpha|D(P) - P\| \to 0$, from which, together with (7), we see that $\|B_\alpha|D(B) - B\| \leq \|A_\alpha|D(P) - P\| \|B\| \to 0$.

Finally, if (1)–(7) hold, then for any $x \in X$, we have $x - Px \in R(A) = R(A^2) = D(B)$ so that $AB(x - Px) = x - Px$ and

$$\|A_\alpha x - Px\| = \|A_\alpha(x - Px)\| = \|A_\alpha AB(I - P)x\| \leq \|AA_\alpha\|\|B\|(M + 1)\|x\|.$$ Hence $\|A_\alpha - P\| \leq (M + 1)\|AA_\alpha\|\|B\|$ and $\|B_\alpha|D(B) - B\| \leq (M + 1)\|AA_\alpha\|\|B\|^2$.

To prove Theorems 2 and 3 we need the following lemma.
Lemma. If A, \{${A}_\alpha$\}, and \{${B}_\alpha$\} satisfy conditions (C1), (C2), and (C3), then A^*, \{${A}^*_\alpha$\}, and \{${B}^*_\alpha$\} also satisfy these conditions.

Proof. It suffices to show that if $E \in B(X)$ is such that $R(E) \subset D(A)$ and $EA \subset AE$, then $R(E^*) \subset D(A^*)$ and $E^*A^* \subset A^*E^* = (AE)^*$. If $x^* \in D(A^*)$, then $\langle Ax^*, E^*x^* \rangle = \langle E Ax^*, x^* \rangle = \langle x^*, A^*E^*x^* \rangle$ for all $x \in D(A)$, so that $E^*x^* \in D(A^*)$ and $A^*E^*x^* = E^*A^*x^* = (AE)^*x^*$. Hence $E^*A^* \subset A^*E^*$. To show $R(E^*) \subset D(A^*)$ and $A^*E^* = (AE)^*$, we use the fact that A^* is weakly densely defined and $w^* - w^*$-closed. For any $x^* \in X^*$, let $\{x^*_\alpha\}$ be a net in $D(A^*)$ such that $x^*_\alpha \to x^*$ weakly*. Then $E^*x^*_\alpha$ and $A^*E^*x^*_\alpha = (AE)^*x^*_\alpha$ converges weakly* to E^*x^* and $(AE)^*x^*$, respectively. This implies that $E^*x^* \in D(A^*)$ and $A^*E^*x^* = (AE)^*x^*$.

Proof of Theorem 2. Since $A_\alpha |R(P) = I$, we may assume $A_\alpha \to 0$ strongly and show that $\|A_\alpha\| \to 0$, without loss of generality. Take a sequence $A_n \equiv A_\alpha \to 0$. Then $A_n x$ converges strongly to 0 for all $x \in X$. This implies that $\{A^*_n x^*_n\}$ converges weakly* and hence weakly to 0 whenever $\{x^*_n\}$ is bounded. In particular, $\{A^*_n x^*_n\} \to 0$ weakly for all $x^* \in X^*$. The convergence actually holds in the strong topology, by the strong ergodic theorem (applied to $\{A^*_n\}$). This fact in turn implies that $\{A_n x_n\}$ converges weakly to 0 whenever $\{x_n\}$ is bounded. Now, it follows from a lemma of Lotz [7] that $\|A^*_n\| \to 0$. Thus $I - A_m$ is invertible for a sufficiently large m. By (C2) and (C3) we obtain that

$$
\|A_n\| = \|A_n(I - A_m)(I - A_m)^{-1}\| = \|A_n AB_m(I - A_m)^{-1}\| \leq \|A_n\| \|B_m\| \|(I - A_m)^{-1}\| \to 0 \quad \text{as } n \to \infty.
$$

Application of Theorem 1 to $\{A_n\}$ and $\{A_\alpha\}$ shows first that $R(A)$ is closed and then that $\|A_\alpha\| \to 0$.

Proof of Theorem 3. If $D(P) = X$, then for every $x^* \in X^*$ we have

$$
w^* - \lim_{n \to \infty} A^*_n x^* = w^* - \lim_{n \to \infty} A^*_\alpha x^* = P^* x^*,
$$

where $\{A_\alpha\}$ is any subsequence of $\{A_\alpha\}$. The strong ergodic theorem applied to $\{A^*_\alpha\}$, shows that $\ast P^* x^* = s^* \lim_{n \to \infty} A^*_\alpha x^*$ for all $x^* \in X^*$, $N(P^*) = \overline{R(A^*)}$. Hence $\overline{R(A^*)} = R(P) = N(A) = [\overline{R(A^*)}]^\perp = w^* - \text{cl} (R(A^*))$.

Conversely, if $\overline{R(A^*)} = w^* - \text{cl} (R(A^*))$, then $D(P)^\perp = \{N(A) \oplus \overline{R(A^*)}\}^\perp = [\overline{R(A^*)}]^\perp = w^* - \text{cl} (R(A^*)) \cap N(A^*) = \overline{R(A^*)} \cap N(A^*) = \{0\}$, again following from the strong ergodic theorem applied to $\{A^*_\alpha\}$. Since $D(P)$ is closed, it must be equal to X.

3. Examples

We consider applications to n-times integrated semigroups, (Y)-semigroups, and cosine operator functions.

3.1. n-times integrated semigroups. Let n be a positive integer. A strongly continuous family $\{T(t) ; t \geq 0\}$ in $B(X)$ is called an n-times integrated semigroup (see [1, 15]) if $T(0) = I$ and

$$
T(t)T(s) = \frac{1}{(n - 1)!} \left(\int_t^{t+s} (t + s - r)^{n-1} T(r) \, dr - \int_0^s (t + s - r)^{n-1} T(r) \, dr \right) \quad (s, t \geq 0).
$$
A C_0-semigroup is called an o-times integrated semigroup. It is known that the integrals over $[0, t], t \geq 0$, of an n-times ($n \geq 0$) integrated semigroup form an $(n + 1)$-times integrated semigroup, but not conversely.

$T(\cdot)$ is called nondegenerate if $T(t)x = 0$ for all $t > 0$ implies $x = 0$. It is called exponentially bounded if there are $M \geq 0$, $w \in \mathbb{R}$ such that $\|T(t)\| \leq Me^{wt}$ for all $t \geq 0$. If $T(\cdot)$ is nondegenerate and exponentially bounded, then there exists a unique closed operator A satisfying $(w, \infty) \subset \rho(A)$ and $(\lambda - A)^{-1}x = \int_0^\infty \lambda^n e^{-\lambda t}T(t)dt$ for $x \in X$ and $\lambda > w$. This operator is called the generator of $T(\cdot)$. It is not necessarily densely defined. We only consider the case when A is densely defined. This includes all C_0-semigroups.

It is known [1, Proposition 3.3] that $\int_0^t T(s)xds \in D(A)$ and $\int_0^t T(s)xds = T(t)x = (t^n/n!)x$ for all $x \in X$, and $\int_0^t T(s)Axds = T(t)x - (t^n/n!)x$ for all $x \in D(A)$. Since A is closed, taking integration gives that

$$
\int_0^t T(s)xds - (t^n/(n + 1)!)x = \begin{cases}
A\int_0^t \int_0^s T(u)duds & \text{for } x \in X \\
\int_0^t \int_0^s T(u)Axduds & \text{for } x \in D(A).
\end{cases}
$$

Let $A_t := (n + 1)!t^{-n-1}\int_0^t T(s)ds$ and $B_t := -(n + 1)!t^{-n-1}\int_0^t \int_0^s T(u)duds$ for $t > 0$. Then $B_tA \subset AB_t = I - A_t$ and $A_tA \subset AA_t = (n+1)!T(t)/t^{n+1}-(n+1)I/t$. Suppose $\|T(t)\| = O(t^n)$ ($t \to \infty$). Then A, $\{A_t\}$, and $\{B_t\}$ satisfy (C1), (C2), and (C3) as $t \to \infty$. On the other hand, the systems $\{\lambda(\lambda - A)^{-1}\}$, $\{-\lambda(\lambda - A)^{-1}\}$ clearly satisfy (C1), (C2), and (C3) as $\lambda \to 0$ too. Hence the strong ergodic theorem and the theorems in §1 are applicable to $\{A_t\}$ with $\{B_t\}$ and $\{\lambda(\lambda - A)^{-1}\}$ with $\{-\lambda(\lambda - A)^{-1}\}$, and the next two theorems follow immediately.

Theorem 4. Let $\{T(t); t \geq 0\}$ be a nondegenerate n-times integrated semigroup with generator A densely defined. Suppose $\|T(t)\| = O(t^n)$ ($t \to \infty$). Let A_t and B_t be as previously defined. Then $s\text{-lim}_{t \to \infty} A_t x$ and $s\text{-lim}_{\lambda \to 0^+} \lambda(\lambda - A)^{-1}x$ exist and are equal if one of them exists, and the limits define a bounded linear projection P onto $N(A)$ along $R(A)$. For $y \in R(A)$, $s\text{-lim}_{t \to \infty} B_t y$ and $s\text{-lim}_{\lambda \to 0^+} (A - \lambda)^{-1}y$ exist and are equal if one of them exists, and the limits define an operator B which sends each $y \in A(D(A) \cap R(A))$ to the unique solution $x = By$ of $Ax = y$ in $R(A)$.

Theorem 5. Under the hypothesis of Theorem 4, the following statements are equivalent:

1. $\|A_t - P\| \to 0$ as $t \to \infty$,
2. $\|\lambda(\lambda - A)^{-1} - P\| \to 0$ as $t \to 0^+$,
3. $R(A)$ is closed,
4. $\|B_t|R(A)|\| = O(1)$ ($t \to \infty$),
5. $\|B_t|R(A) - B\| \to 0$ as $t \to \infty$,
6. $\|((\lambda - A)^{-1})R(A) - B\| \to 0$ as $\lambda \to 0^+$.

Moreover, when X is a Grothendieck space with the Dunford-Pettis property, $D(P) = X$ and $R(A^*) = w^*\text{-cl}(R(A^*))$ are two more equivalent conditions.

Remarks. (i) When (1)-(6) hold, we have $\|A_t - P\| = O(1/t)$, $\|B_t|R(A) - B\| = O(1/t)$ ($t \to \infty$), and $\|\lambda(\lambda - A)^{-1} - P\| = O(\lambda)$, $\|((\lambda - A)^{-1})R(A) - B\| = O(\lambda)$, $\lambda \to 0^+$.
(ii) In the case \(n = 0 \), Theorem 4 is well known (see [3, pp. 58-60] for the first part, and [4] for the second part), the equivalence of (1), (2), and (3) in Theorem 5 is proved in [6] (see also [10]), the equivalence of strong ergodicity and \(R(A^*) = w^*\text{-cl}(RA^*) \) in a Grothendieck space is proved in [9], and the equivalence of strong ergodicity and uniform ergodicity in a Grothendieck space with the Dunford-Pettis property is proved in [7]. The theorems with \(n \geq 1 \) are new.

3.2. \((Y)\)-semigroups. Let \(Y \) be a closed subspace of \(X^* \) such that the canonical imbedding of \(X \) into \(Y^* \) is isometric. A semigroup \(\{T(t); t \geq 0\} \) of operators on \(X \) is called a \((Y)\)-semigroup (cf. [8, 11]) if \(Y \) is invariant under \(T^*(t) \) for all \(t \geq 0 \) and \(T^*(\cdot)x \) is \(\sigma(X, Y)\)-continuous on \([0, \infty) \) and locally \(\sigma(X, Y)\)-Pettis integrable for all \(x \in X \). The generator \(A \) of \(T(\cdot) \) is defined by \(Ax := \sigma(X, Y)\)-lim_{\(t \to \infty \)} t^{-1}(T(t) - I)x \). A \(C_0 \)-semigroup on \(X \) is a \((X^*)\)-semigroup, and its dual semigroup is a \((X)\)-semigroup. The tensor product \(T(t) \) of two \(C_0 \)-semigroups \(e^{tA} \) and \(e^{-tB} \) on \(X \) is a \((Y)\)-semigroup on \(B(X) \) for some suitable subspace \(Y \) of \(B(X)^* \); its generator is the operator \(\Delta : C \to AC - CB \).

The strong convergence of ergodic limits of a \((Y)\)-semigroup and that of approximate solutions of the corresponding equation \(Ax = y \) have been discussed in [13, Example VI]. The result is the same as Theorem 4 with \(n = 0 \). By applying Theorems 1 and 2 one can easily see that Theorem 5 with \(n = 0 \) holds for \((Y)\)-semigroups too. Since \(S(t) := \int_0^t T(s) ds \), \(t \geq 0 \), forms a once-integrated semigroup, we can apply Theorems 4 and 5 to \(S(\cdot) \) to obtain ergodic theorems for \((C, 2)\)-means of \(T(\cdot) \); they are Theorems 4 and 5 with \(A_t = 2t^{-2} \int_0^t \int_0^s T(u) du ds \) and \(B_t = -2t^{-2} \int_0^t \int_0^s \int_0^u T(v) dv du ds \).

3.3. Cosine operator functions. A strongly continuous family \(\{C(t); t \in \mathbb{R}\} \) in \(B(X) \) is called a cosine operator function if \(C(0) = I \) and \(C(t+s) + C(t-s) = 2C(t)C(s) \), \(s, t \in \mathbb{R} \). The generator \(A \), defined by \(Ax := C''(0)x \), is a densely defined closed operator.

For \(t > 0 \) let
\[
A_t := 2t^{-2} \int_0^t \int_0^s C(u) du ds
\]
and
\[
B_t = -2t^{-2} \int_0^t \int_0^s \int_0^u C(w) dw du ds.
\]
Then we have \(B_t A \subset AB_t \subset I_t - A \) and \(A_t A \subset AA_t = 2t^{-2}(C(t) - I) \). The strong convergence of \(A_t x \) and \(B_t y \) as \(t \to \infty \) has been discussed in [13, Example VII]. We now deduce from Theorems 1 and 2 the following theorem about uniform convergence.

Theorem 6. Suppose that \(\| \int_0^t \int_0^s C(u) du ds \| = O(t^2) \quad (t \to \infty) \) and \(\| C(t) \| = o(t^2) \quad (t \to \infty) \). Then, with \(A_t \) and \(B_t \) defined as above, the conclusion of Theorem 5 remains valid.

Concluding remark

Our Theorems 1, 2, and 3 can also be used to deduce uniform ergodic theorems for discrete semigroups (cf. [5, 7]) and uniform ergodic theorems for pseudoresolvents (cf. [10, 12]).
REFERENCES

7. H. P. Lotz, Tauberian theorems for operators on L^∞ and similar spaces, Functional Analysis: Surveys and Recent Results III, North-Holland, Amsterdam, 1984, pp. 117–133.

DEPARTMENT OF MATHEMATICS, NATIONAL CENTRAL UNIVERSITY, CHUNG-LI, TAIWAN, REPUBLIC OF CHINA