Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

A note on the Dirichlet problem at infinity for manifolds of negative curvature


Author: Albert Borbély
Journal: Proc. Amer. Math. Soc. 114 (1992), 865-872
MSC: Primary 58G20; Secondary 53C20, 58G30
MathSciNet review: 1069289
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: M. T. Anderson and D. Sullivan showed that the Dirichlet problem at infinity for simply connected manifolds is solvable if the curvature satisfies $ - {a^2} < K < - {b^2}$. Using M. T. Anderson's method we generalize this statement to manifolds satisfying the weaker bounds $ - g(r) < K < - {b^2}$, where $ g(r) \approx {e^{\lambda r}}$, with $ \lambda < 1/3$.


References [Enhancements On Off] (What's this?)

  • [1] Michael T. Anderson, The Dirichlet problem at infinity for manifolds of negative curvature, J. Differential Geom. 18 (1983), no. 4, 701–721 (1984). MR 730923
  • [2] Werner Ballmann, On the Dirichlet problem at infinity for manifolds of nonpositive curvature, Forum Math. 1 (1989), no. 2, 201–213. MR 990144, 10.1515/form.1989.1.201
  • [3] Jeff Cheeger and David G. Ebin, Comparison theorems in Riemannian geometry, North-Holland Publishing Co., Amsterdam-Oxford; American Elsevier Publishing Co., Inc., New York, 1975. North-Holland Mathematical Library, Vol. 9. MR 0458335
  • [4] H. I. Choi, Asymptotic Dirichlet problems for harmonic functions on Riemannian manifolds, Thesis, Univ. California, Berkeley, 1982.
  • [5] P. Eberlein and B. O’Neill, Visibility manifolds, Pacific J. Math. 46 (1973), 45–109. MR 0336648
  • [6] Ju. I. Kifer, Brownian motion and harmonic functions on manifolds of negative curvature, Teor. Verojatnost. i Primenen. 21 (1976), no. 1, 81–94 (Russian, with English summary). MR 0420887
  • [7] Wilhelm Klingenberg, Riemannian geometry, de Gruyter Studies in Mathematics, vol. 1, Walter de Gruyter & Co., Berlin-New York, 1982. MR 666697
  • [8] Dennis Sullivan, The Dirichlet problem at infinity for a negatively curved manifold, J. Differential Geom. 18 (1983), no. 4, 723–732 (1984). MR 730924

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 58G20, 53C20, 58G30

Retrieve articles in all journals with MSC: 58G20, 53C20, 58G30


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1992-1069289-8
Keywords: Dirichlet problem, harmonic functions
Article copyright: © Copyright 1992 American Mathematical Society