Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



On the minimum modulus of trigonometric polynomials

Author: George Benke
Journal: Proc. Amer. Math. Soc. 114 (1992), 757-761
MSC: Primary 42A05; Secondary 30C10
MathSciNet review: 1069683
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: For all even integers $ N$ greater than 2, a trigonometric polynomial $ {f_N}(x) = \sum\nolimits_{k = - N}^{{N^2}} {{a_k}{e^{ikx}}} $ satisfying $ \vert{a_k}\vert\; \leq \;1$ and $ 0.47N \leq \vert{f_N}(x)\vert \leq N$ is constructed.

References [Enhancements On Off] (What's this?)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 42A05, 30C10

Retrieve articles in all journals with MSC: 42A05, 30C10

Additional Information

Keywords: Trigonometric polynomials, extremal problems, unimodular polynomials
Article copyright: © Copyright 1992 American Mathematical Society