Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

Pseudo-Riemannian metrics and Hirzebruch signature


Author: Peter R. Law
Journal: Proc. Amer. Math. Soc. 114 (1992), 791-794
MSC: Primary 58A12; Secondary 53C50, 57R20
DOI: https://doi.org/10.1090/S0002-9939-1992-1070523-9
MathSciNet review: 1070523
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: On compact, orientable, $ 4k$-dimensional manifolds, nonvanishing Hirzebruch signature is shown to be an obstruction to the existence of certain kinds of pseudo-Riemannian metrics.


References [Enhancements On Off] (What's this?)

  • [1] André Avez, Essais de géométrie riemannienne hyperbolique globale. Applications à la relativité générale, Ann. Inst. Fourier (Grenoble) 13 (1963), no. fasc. 2, 105–190 (French). MR 0167940
  • [2] John W. Milnor and James D. Stasheff, Characteristic classes, Princeton University Press, Princeton, N. J.; University of Tokyo Press, Tokyo, 1974. Annals of Mathematics Studies, No. 76. MR 0440554
  • [3] Ian R. Porteous, Topological geometry, 2nd ed., Cambridge University Press, Cambridge-New York, 1981. MR 606198
  • [4] Michael Spivak, A comprehensive introduction to differential geometry. Vol. IV, Publish or Perish, Inc., Boston, Mass., 1975. MR 0394452
    Michael Spivak, A comprehensive introduction to differential geometry. Vol. V, Publish or Perish, Inc., Boston, Mass., 1975. MR 0394453

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 58A12, 53C50, 57R20

Retrieve articles in all journals with MSC: 58A12, 53C50, 57R20


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1992-1070523-9
Article copyright: © Copyright 1992 American Mathematical Society