Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Pseudo-Riemannian metrics and Hirzebruch signature


Author: Peter R. Law
Journal: Proc. Amer. Math. Soc. 114 (1992), 791-794
MSC: Primary 58A12; Secondary 53C50, 57R20
DOI: https://doi.org/10.1090/S0002-9939-1992-1070523-9
MathSciNet review: 1070523
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: On compact, orientable, $ 4k$-dimensional manifolds, nonvanishing Hirzebruch signature is shown to be an obstruction to the existence of certain kinds of pseudo-Riemannian metrics.


References [Enhancements On Off] (What's this?)

  • [1] A. Avez, Essais de géométrie Riemannienne hyperbolique globale-applications a la relativité générale, Ann. Inst. Fourier (Grenoble) 13 (1963), 105-190. MR 0167940 (29:5205)
  • [2] J. W. Milnor and J. D. Stasheff, Characteristic classes, Princeton Univ. Press, Princeton, NJ, 1974. MR 0440554 (55:13428)
  • [3] I. R. Porteous, Topological geometry, 2nd ed., Cambridge Univ. Press, Cambridge, 1981. MR 606198 (82c:51018)
  • [4] M. Spivak, A comprehensive introduction to differential geometry, vol. V, 2nd ed., Publish or Perish, Berkeley, 1979. MR 0394453 (52:15254b)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 58A12, 53C50, 57R20

Retrieve articles in all journals with MSC: 58A12, 53C50, 57R20


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1992-1070523-9
Article copyright: © Copyright 1992 American Mathematical Society

American Mathematical Society