Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Normal spaces with prescribed Stone-Čech remainders


Authors: Jack R. Porter and R. Grant Woods
Journal: Proc. Amer. Math. Soc. 114 (1992), 857-863
MSC: Primary 54D40; Secondary 54D15, 54D35, 54D45, 54D55
DOI: https://doi.org/10.1090/S0002-9939-1992-1070531-8
MathSciNet review: 1070531
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: It is shown that if $ X$ is a locally compact Hausdorff space, then there is a normal space $ Y$ such that $ \beta Y\backslash Y \cong X$. Examples are given of a countable nonsequential space, and a sequential nonlocally compact space, each of which is the Stone-Čech remainder of a normal space. A method of constructing normal almost compact spaces is presented.


References [Enhancements On Off] (What's this?)

  • [vD] E. K. van Douwen, The integers and topology, Handbook of Set-Theoretic Topology (K. Kunen and J. Vaughan, eds.), North-Holland, Amsterdam, 1984, pp. 111-167. MR 776619 (85k:54001)
  • [F] S. P. Franklin, Spaces in which sequences suffice. II, Fund. Math. 61 (1967), 51-56. MR 0222832 (36:5882)
  • [FL] W. Fleissner and R. Levy, Stone-Čech remainders which make continuous images normal, Proc. Amer. Math. Soc. 106 (1989), 839-842. MR 963571 (89k:54054)
  • [FR] S. P. Franklin and M. Rajagopalan, Some examples in topology, Trans. Amer. Math. Soc. 155 (1971), 305-314. MR 0283742 (44:972)
  • [GJ] L. Gillman and M. Jerison, Rings of continuous functions, Van Nostrand, Princeton, NJ, 1960. MR 0116199 (22:6994)
  • [H] R. Hodel, Cardinal functions. I, Handbook of Set-Theoretic Topology (K. Kunen and J. Vaughan, eds.), North-Holland, Amsterdam, 1984, pp. 1-61. MR 776620 (86j:54007)
  • [M] K. Magill, A note on compactifications, Math. Z. 94 (1966), 322-325. MR 0203681 (34:3530)
  • [N] T. Nogura, Tightness of comapct Hausdorff spaces and normality of product spaces, J. Math. Soc. Japan 28 (1976), 360-362. MR 0415557 (54:3642)
  • [P] T. Przymusinski, Products of normal spaces, Handbook of Set-Theoretic Topology (K. Kunen and J. Vaughan, eds.), North-Holland, Amsterdam, 1984, pp. 781-826. MR 776637 (86c:54007)
  • [PW] J. R. Porter and R. G. Woods, Extensions and absolutes of Hausdorff spaces, Springer-Verlag, New York, 1987. MR 918341 (89b:54003)
  • [V] J. Vermeer, Two generalizations of normality, Topology and Measure III, Proc. Conf. (Vitte/Hiddensee, 1980), Part 2, 1982, pp. 329-338.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 54D40, 54D15, 54D35, 54D45, 54D55

Retrieve articles in all journals with MSC: 54D40, 54D15, 54D35, 54D45, 54D55


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1992-1070531-8
Keywords: Stone-Čech compactification, normal, almost compact, sequential, locally compact
Article copyright: © Copyright 1992 American Mathematical Society

American Mathematical Society