A character sum for root system

Author:
Ronald Evans

Journal:
Proc. Amer. Math. Soc. **114** (1992), 627-635

MSC:
Primary 11L05; Secondary 11T24, 17B20, 17B25, 33C80

DOI:
https://doi.org/10.1090/S0002-9939-1992-1073525-1

MathSciNet review:
1073525

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A character sum analog of the Macdonald-Morris constant term identity for the root system is proved. The proof is based on recent evaluations of Selberg character sums and on a character sum analog of Dixon's summation formula. A conjectural evaluation is presented for a related sum.

**[1]**G. W. Anderson,*The evaluation of Selberg sums*, C. R. Acad. Sci. Paris Sér. I Math.**311**(1990), 469-472. MR**1076474 (91m:11109)****[2]**R. J. Evans,*Identities for products of Gauss sums over finite fields*, Enseign. Math. (2)**27**(1981), 197-209. MR**659148 (83i:10050)****[3]**-,*Character sum analogues of constant term identities for root systems*, Israel J. Math.**46**(1983), 189-196. MR**733348 (85c:11073)****[4]**-,*The evaluation of Selberg character sums*, Enseign. Math. (to appear).**[5]**R. J. Evans and W. A. Root,*Conjectures for Selberg character sums*, J. Ramanujan Math. Soc.**3**(1988), 111-128. MR**975841 (90e:11120)****[6]**F. G. Garvan,*A beta integral associated with the root system*, SIAM J. Math. Anal.**19**(1988), 1462-1474. MR**965267 (89k:33002)****[7]**J. Greene,*The Bailey transform over finite fields*(to appear).**[8]**K. Ireland and M. Rosen,*A classical introduction to modern number theory*, Graduate Texts in Math., vol.**84**, Springer-Verlag, New York, 1982. MR**661047 (83g:12001)****[9]**I. G. Macdonald,*Some conjectures for root systems*, SIAM J. Math. Anal.**13**(1982), 988-1007. MR**674768 (84h:17006a)****[10]**W. G. Morris,*Constant term identities for finite and affine root systems*, Ph.D. thesis, Univ. of Wisconsin, Madison, 1982.**[11]**D. Zeilberger,*A proof of the**case of Macdonald's root system--Dyson conjecture*, SIAM J. Math. Anal.**18**(1987), 880-883. MR**883574 (88f:05017)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
11L05,
11T24,
17B20,
17B25,
33C80

Retrieve articles in all journals with MSC: 11L05, 11T24, 17B20, 17B25, 33C80

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1992-1073525-1

Article copyright:
© Copyright 1992
American Mathematical Society