AN EXTENSION OF A THEOREM OF KHAVINSON

JOHN FERRY

(Communicated by Paul S. Muhly)

Abstract. We extend a generalization of the Cauchy-Green formula, which in turn extends results in rational approximation.

Theorem. Let $K \subseteq \mathbb{C}$ be compact and have finite perimeter. Let $2 < p < \infty$ and $f \in W^{1,p}(\mathbb{C})$. Then there exists a subset E of K satisfying $m_2E = 0$ and

$$\frac{1}{2\pi i} \int_{B_k} \frac{f(z)}{z - z_0} \, dz - \frac{1}{\pi} \int_K \frac{\partial f}{\partial z} \, dA = \begin{cases} f(z_0) & \text{if } z_0 \in K \setminus E, \\ 0 & \text{if } z_0 \in \mathbb{C} \setminus K. \end{cases}$$

Remarks. (1) B_K is the reduced boundary of K, the "nice" portion of the topological boundary of K. For a precise definition of B_K and of finite perimeter, see [2]. $W^{1,p}(\mathbb{C})$ is defined in [1]. $dm_2 = dA$ denotes Lebesgue area measure and ∂ indicates $\partial/\partial z$.

(2) Khavinson [2, Theorem 2.1] proves the above for $f \in \text{Lip}(1, \mathbb{C})$. The above theorem does extend Khavinson's; this will be discussed following the proof.

Proof. By Theorem 3.18 [1], there exists a sequence (ϕ_n) of C^∞—functions having compact support, with $\phi_n \to f$ in $W^{1,p}(\mathbb{C})$. By Theorem 5.4 [1], $W^{1,p}(\mathbb{C})$ is continuously embedded in $(C \cap L^\infty)(\mathbb{C})$, the bounded continuous functions (with the sup norm).

Set $F = \left\{ z_0 \in K : \int_{B_k} \frac{|dz|}{|z - z_0|} < \infty \text{ and for each } n, \phi_n(z_0) = \frac{1}{2\pi i} \int_{B_k} \frac{\phi_n}{z - z_0} \, dz - \frac{1}{\pi} \int_K \frac{\partial \phi_n}{\partial z} \, dA \right\}$, and $E = K \setminus F$. By Theorem 2.1 [2], $m_2E = 0$.

Let $z_0 \in \mathbb{C} \setminus E$. Since (ϕ_n) converges uniformly to f, we have

$$\left| \int_{B_k} \frac{f - \phi_n}{z - z_0} \, dz \right| \leq \|f - \phi_n\|_{B_k} \int_{B_k} \frac{|dz|}{|z - z_0|} \to 0,$$

Received by the editors September 19, 1990.

1991 Mathematics Subject Classification. Primary 30E10, 31A10.

Key words and phrases. Cauchy-Green, rational approximation, finite perimeter, reduced boundary, Sobolev spaces, Lipschitz class.
where \(\| \cdot \|_{B_K} \) denotes the supremum over the set \(B_K \). Writing \(1/p + 1/q = 1 \), we see
\[
\left| \int_K \frac{\partial (f - \phi_n)}{z - z_0} \, dA \right| \leq \| \partial (f - \phi_n) \|_{L^p(K)} \left(\int_K \frac{dA}{|z - z_0|^q} \right)^{1/q} \to 0.
\]

Since \(\phi_n(z_0) \to f(z_0) \), we are done. (By Theorem 2.1 [2], the above theorem holds for each \(\phi_n \).) \(\Box \)

Consider now the above theorem together with Theorem 2.1 [2]. The conclusions of both theorems involve only the values of the function in a neighborhood of \(K \). By means of a cutoff function (multiply by a \(C^\infty \)—function having compact support, which is equal to 1 in a neighborhood of \(K \)), we can (in the hypotheses of the above theorems) replace the spaces \(W^{1,p}(\mathbb{C}) \) and \(\text{Lip}_c(1, \mathbb{C}) \) by \(W^{1,p}_c(\mathbb{C}) \) and \(\text{Lip}_c(1, \mathbb{C}) \), respectively, where the subscript \(c \) refers to compact support. In the proof of Theorem 2.1 [2], Khavinson (basically) proves the inclusion \(\text{Lip}_c(1, \mathbb{C}) \subseteq W^{1,p}_c(\mathbb{C}) \). Clearly \(W^{1,\infty}_c(\mathbb{C}) \subseteq W^{1,p}_c(\mathbb{C}) \) for \(2 < p < \infty \).

It is in this manner that the above theorem is an extension of Khavinson's.

Using the above theorem, we may extend Theorem 3.1, Theorem 3.2, and Corollary 3.1 of [2] to functions in \(W^{1,p}(\mathbb{C}) \). The statements and proofs are otherwise identical: simply replace \(f \in \text{Lip}(1, \mathbb{C}) \) by \(f \in W^{1,p}(\mathbb{C}) \).

Acknowledgment

I wish to thank Xiao Li for finding a mistake in my original proof of the theorem and for bringing the paper [2] to my attention.

References

Department of Mathematics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061