UNIFORM LIMITS OF SEQUENCES OF POLYNOMIALS AND THEIR DERIVATIVES

JOSEPH A. BALL AND THOMAS R. FANNEY

(Communicated by Palle E. T. Jorgensen)

Abstract. Let E be a compact subset of the unit interval $[0, 1]$, and let $C(E)$ denote the space of functions continuous on E with the uniform norm. Consider the densely defined operator $D: C(E) \to C(E)$ given by $Dp = p'$ for all polynomials p. Let \mathcal{G} represent the graph of D, that is $\mathcal{G} = \{(p, p'): p$ polynomials$\}$ considered as a submanifold of $C(E) \times C(E)$. Write the interior of the set E, $\text{int} E$ as a countable union of disjoint open intervals and let \bar{E} be the union of the closure of these intervals. The main result is that the closure of \mathcal{G} is equal to the set of all functions $(h, k) \in C(E) \times C(E)$ such that h is absolutely continuous on \bar{E} and $k|\bar{E} = h'|\bar{E}$. As a consequence, the operator D is closable if and only if the set E is the closure of its interior. On the other extreme, \mathcal{G} is dense in $C(E) \times C(E)$ i.e. for any pair $(f, g) \in C(E) \times C(E)$, there exists a sequence of polynomials (p_n) so that $p_n \to f$ and $p'_n \to g$ uniformly on E, if and only if the interior $\text{int} E$ of E is empty.

1. Introduction

The goal of this paper is to characterize those pairs of continuous functions (f, g) which arise as uniform limits of polynomial pairs of the form (p_n, p'_n) (where p'_n is the derivative of the polynomial p_n) on some compact set $E \subset \mathbb{R}$. In the language of operator theory, this result amounts to a characterization of the uniform closure \mathcal{G}^\perp of the graph \mathcal{G} of the differentiation operator $D: C(E) \to C(E)$ given by $Dp = p'$ with domain equal to the dense linear manifold of all polynomials in $C(E)$. An explicit description of the uniform closure of \mathcal{G} is given by (2.1) and Theorems 2.2 and 2.9. As a corollary, a complete characterization of when D is closable (i.e., when \mathcal{G}^\perp contains no nontrivial elements of the form $(0, k)$) is obtained in Theorem 3.1; for a discussion of this problem in the plane, see [FR]. On the other extreme, another specialization (Corollary 3.3) gives a necessary and sufficient condition for the graph of \mathcal{G} to be dense in $C(E) \times C(E)$, i.e., for an arbitrary pair (f, g) in $C(E) \times C(E)$ to be uniformly approximable over E by a sequence of the form (p_n, p'_n), with p_n a polynomial. Partial results on this latter problem for the case where E is a compact subset of the complex plane are obtained in [B1, B2]. The general problem for the complex case where E is a compact subset...
of C appears to be quite difficult; our purpose here is to show that a complete, explicit solution can be obtained for the case that E is contained in \mathbb{R} by use of elementary functional analysis.

More complicated parallel versions of these results where $C(E) \times C(E)$ is replaced by $L^p(\mu) \times L^p(\nu)$ where μ and ν are compactly supported measures on \mathbb{R}, together with connections with some operator theory questions, are presented in [BF]. Most of these results (including the results of this paper) form part of the second author's Ph.D. dissertation [F] written under the direction of the first author.

2. The closure of the graph of a differentiation

Let E be a compact subset of the real line \mathbb{R}, and let $C(E)$ denote the Banach space of continuous functions on E with the uniform norm. For convenience without loss of generality we assume that E is contained in the unit interval $[0, 1]$. Consider the densely defined operator $D: C(E) \to C(E)$ given by $Dp = p'$ for all polynomials p. Let \mathcal{G} represent the graph of D, that is

$$\mathcal{G} = \{(p, p') : p \text{ a polynomial}\}.$$

We wish to characterize the closure of \mathcal{G}, \mathcal{G}^- in the product topology of uniform convergence in each component.

The analysis relies on the topological properties of E. Denote by $\text{int} E$ the interior of E. Write $\text{int} E$ as a countable disjoint union of intervals $\text{int} E = \bigcup_i (a_i, b_i)$. Let \hat{E} be given by $\hat{E} = \bigcup_i [a_i, b_i]$. Notice first that the expression for \hat{E} is also a disjoint union; indeed, if $[a_i, b_i] \cap [a_j, b_j] \neq \emptyset$ where $a_i < a_j$, then $(a_i, b_j) \subset \text{int} E$, a contradiction. Secondly $E \setminus \hat{E}$ contains no intervals since it is a subset of the nowhere dense set $E \setminus \text{(int} E)$. Now let $\hat{\mathcal{G}}$ denote the closed submanifold of $C(E) \times C(E)$ defined by

$$(2.1) \quad \hat{\mathcal{G}} = \{(h, k) \in C(E) \times C(E) : h \text{ is } AC(\hat{E}) \text{ and } k|\hat{E} = h'|\hat{E}\}.$$

Our result is that $\mathcal{G}^- = \hat{\mathcal{G}}$. We begin by proving $\mathcal{G}^- \subset \hat{\mathcal{G}}$, which is straightforward. The other inclusion relies on a characterization of the annihilator of \mathcal{G}, \mathcal{G}^\perp, where the duality relationship is that of $C(E)$ with $M(E)$, the Banach space of all regular Borel measures supported in E.

Theorem 2.2. $\mathcal{G}^- \subset \hat{\mathcal{G}}$.

Proof. Let $(h, k) \in \mathcal{G}^-$. Let $\{p_n\}$ be a sequence of polynomials such that $p_n \to h$ and $p'_n \to k$ uniformly on E. If $\hat{E} = \bigcup_i [a_i, b_i]$, we need to show for each i, h is $AC([a_i, b_i])$ and $h'|[a_i, b_i] = k$. Fix one such i. We have, for all $x, y \in [a_i, b_i]$,

$$\begin{align*}
p_n(x) - p_n(y) &= \int_{[y,x]} p'_n(t) \, dt.
\end{align*}$$

Furthermore for each $x, y \in [a_i, b_i]$, $p_n(x) - p_n(y) \to h(x) - h(y)$.

Finally, since $p'_n \to k$ uniformly, we have

$$\lim_{n \to \infty} \int_{[y,x]} p'_n(t) \, dt = \int_{[y,x]} k(t) \, dt.$$
for all $x, y \in [a_i, b_i]$. The theorem then follows by taking the limit as n goes to infinity in (2.2.1). \qed

The proof of the other inclusion involves establishing some lemmas which characterize \mathcal{G}^\perp and localizes our concerns to each $[a_i, b_i]$.

Lemma 2.3. For two regular Borel measures m_1 and m_2 supported on E, $(m_1, m_2) \in \mathcal{G}^\perp$ if and only if

\begin{align*}
(2.3.1) & \quad \int_{[0,1]} dm_1 = 0 \\
(2.3.2) & \quad \text{the measure } \left[\int_{[x,1]} m_1(t) \right] dx \text{ is supported in } E, \\
(2.3.3) & \quad dm_2(x) = -\left[\int_{[x,1]} m_1(t) \right] dx.
\end{align*}

Proof. We first note that (2.3.3) states that the Radon-Nikodym derivative of m_2 with respect to m (Lebesgue measure) is $-\left[\int_{[x,1]} m_1(t) \right]$. That is

$$dm_2/dm = -\left[\int_{[x,1]} m_1(t) \right].$$

Now suppose $(m_1, m_2) \in \mathcal{G}^\perp$. Then for all polynomials p,

\begin{align*}
0 &= \int_{[0,1]} p(x) dm_1(x) + \int_{[0,1]} p'(x) dm_2(x) \\
&= p(0) \int_{[0,1]} dm_1(x) + \int_{[0,1]} p'(t) dt \int_{[x,1]} dm_1(t) + \int_{[0,1]} p'(x) dm_2(x) \\
&= p(0) \int_{[0,1]} dm_1(t) + \int_{[0,1]} p'(x) \int_{[x,1]} dm_1(t) dx + \int_{[0,1]} p'(x) dm_2(x).
\end{align*}

Letting $p = 1$ in (2.3.4), we get that m_1 must satisfy (2.3.1). Next, by considering polynomials p' with $p(0) = 0$ (a dense set in $C([0,1])$ by the Stone-Weierstrass theorem), it follows from (2.3.4) that m_1 and m_2 must satisfy (2.3.2) and (2.3.3).

To prove the other direction simply reverse the argument. \qed

The key to the proof of the general result is that elements in \mathcal{G}^\perp must be zero off \hat{E}. This is established in the following.

Lemma 2.4. If $(m_1, m_2) \in \mathcal{G}^\perp$, then m_1 has no point masses in $E \setminus \hat{E}$.

Proof. As noted above, $E \setminus \hat{E}$ contains no intervals. Thus any open interval must intersect the complement of $E \setminus \hat{E}$. Let $x_0 \in E \setminus \hat{E}$. By (2.3.2), for m — a.e. $x \in [0, 1] \setminus E$

\begin{equation}
(2.4.1) \quad m_1((x, 1]) = \int_{[x,1]} dm_1(t) = 0.
\end{equation}
Thus, by additivity, \(m_1((x,y]) = 0 \) for \(m \)-a.e. \(x, y \) in \([0,1]\setminus E\). Now choose a sequence of positive numbers \(\{\xi_n\} \) so that \(\xi_n \searrow 0 \). Let \(I_n = (x_0 - \xi_n, x_0 + \xi_n) \). We wish to show that, for each \(n \), there are points \(x_n \) and \(y_n \) belonging to \(I_n \), with \(x_n < x_0 < y_n \), so that \(m_1((x_n, y_n]) = 0 \). To do this, from (2.4.1), it suffices to show that each \(I_n \) intersects the complement of \(E \) in a set of positive Lebesgue measure on each side of \(x_0 \). We first show that \(I_n \) must intersect the complement of \(E \) on each side of \(x_0 \). Indeed, if, say, \(I_n \) did not intersect \([0,1]\setminus E\) to the left of \(x_0 \), then it would follow that \((x_0 - \xi_n, x_0] \subset E \). But this would contradict \(x_0 \notin \tilde{E} \). Next, note that both \([0,1]\setminus E\) and \(I_n \) are open. Thus their nonempty intersection, which, from above, contains an open interval on each side of \(x_0 \), must have positive Lebesgue measure. Thus we have shown that there are sequences \(\{x_n\}, \{y_n\} \) such that \(\bigcap_n (x_n, y_n] = \{x_0\} \) and \(m_1((x_n, y_n]) = 0 \) for each \(n \). Finally, since \(m_1 \) is regular, we have

\[
\lim_{n \to \infty} m_1((x_n, y_n]) = m_1(\{x_0\})
\]

and the lemma follows. \(\Box \)

Lemma 2.5. Let \(A = \{x \in E\setminus \tilde{E}: \int_{[x,1]} m_1(t) \, dt = 0\} \). Then \(m_1(A) = 0 \).

Proof. We use in our arguments the total variation of \(m_1 \), \(|m_1| \), which is regular if \(m_1 \) is regular. So, without loss of generality, we may assume \(A \) is closed. Let \(\epsilon > 0 \) be given and choose an open set \(U \supset A \) so that \(|m_1(U \setminus A)| < \epsilon \). Write \(U \) as a disjoint union of open intervals: \(U = \bigcup_n (\alpha_n, \beta_n) \). We construct a new open set \(U_1 \supset A \) as follows. Delete each interval \((\alpha_n, \beta_n) \) for which \((\alpha_n, \beta_n) \cap A = \emptyset \) from the collection \(\{(\alpha_n, \beta_n)\} \). Let

\[
\alpha'_n = \inf\{x: x \in (\alpha_n, \beta_n) \cap A\}, \quad \beta'_n = \sup\{x: x \in (\alpha_n, \beta_n) \cap A\}.
\]

Then, for each \(n \) not deleted, let

\[
U_1 = \bigcup_n (\alpha'_n, \beta'_n).
\]

Then \(A \subset U_1 \), modulo the endpoints \(\alpha'_n \) and \(\beta'_n \) which are in \(A \), since \(A \) is closed. But the collection of all endpoints is a countable set in \(E\setminus \tilde{E} \), and, by Lemma 2.4, has \(m_1 \)-measure zero. Furthermore,

\[
m_1((\alpha'_n, \beta'_n)) = \int_{(\alpha'_n, 1]} m_1(t) \, dt - \int_{(\beta'_n, 1]} m_1(t) \, dt = 0
\]

by assumption. Thus \(m_1(U_1) = 0 \). Finally, then

\[
|m_1(A)| = |m_1(U_1) - m_1(A)| = |m_1(U_1 \setminus A)|
\]

\[
\leq |m_1(U \setminus A)| \leq |m_1(U \setminus A)| < \epsilon.
\]

So by arbitrariness of \(\epsilon \), Lemma 2.5 follows. \(\Box \)

Lemma 2.6. For \((m_1, m_2) \in \mathcal{F} \perp, |m_1|(E\setminus \tilde{E}) = 0 \).

Proof. Suppose there is an \(A \subset E\setminus \tilde{E} \) with \(m_1(A) \neq 0 \). Then by Lemma 2.4, there exists \(x_0 \in E\setminus \tilde{E} \) so that

\[
\int_{[x_0, 1]} m_1(t) \, dt \neq 0.
\]
But, since \(m_1 \) has no point masses in \(E \setminus \hat{E} \), the function \(\int_{(x, 1]} dm_1(x) \) is continuous on \(E \setminus \hat{E} \).

Thus there is an interval \(I \) containing \(x_0 \) and \(\xi > 0 \), so that
\[
\left| \int_{(x, 1]} dm_1(t) \right| > \xi
\]
for all \(x \in I \cap (E \setminus \hat{E}) \). Since \(I \) must intersect \([0, 1] \setminus E\) and \(m_1 \) is supported on \(E \), this contradicts (2.3.2). \(\square \)

Corollary 2.7. For \((m_1, m_2) \in \mathcal{G}^\perp, \quad |m_2|(E \setminus \hat{E}) = 0.\)

Proof. Let \(B \subset E \setminus \hat{E} \). Then, if \(A \) is defined as in Lemma 2.5,
\[
B = (B \cap A) \cup (B \cap [(E \setminus \hat{E}) \setminus A]) = B_1 \cup B_2.
\]
Now, by (2.3.3), for any set \(C \)
\[
\int_C dm_2(t) = -\int_C \int_{(x, 1]} dm_1(t) dx.
\]
So \(m_2(B_1) = 0 \) by definition of \(A \). So suppose \(m_2(B_2) \neq 0 \). Then there must be an \(x_0 \in E \setminus \hat{E} \) so that \(\int_{(x_0, 1]} dm_1(t) \neq 0 \). But this leads to a contradiction as in the proof of Lemma 2.6. \(\square \)

Recall that \([a_i, b_i] \quad (i = 1, 2, \ldots)\) are the maximal intervals in \(\hat{E} \).

Lemma 2.8. For each \(i \),
\[
0 = \int_{[a_i, 1]} dm_1(t) = \int_{(b_i, 1]} dm_1(t).
\]

Proof. By regularity of \(m \), for \(x_n \not\in a_i \).
\[
(2.8.1) \quad \lim_{n \to \infty} m_1((x_n, 1]) = m_1([a_i, 1]).
\]
Let \(I \) be an open interval containing \(a_i \). Then \(I \) must intersect \([0, 1] \setminus E\), an open set of positive Lebesgue measure. But since (2.3.2) states \(\int_{(x, 1]} dm(t) = 0 \) for \(m - \text{a.e.} \ x \in [0, 1] \setminus E \), there is a sequence \(\{x_n\} \) converging up to \(a_i \) so that, for each \(n \),
\[
m_1((x_n, 1]) = \int_{(x_n, 1]} dm_1(t) = 0.
\]
Using this sequence in (2.8.1), we get \(\int_{[a_i, 1]} dm(t) = 0 \). A similar argument shows that \(\int_{(b_i, 1]} dm_1(t) = 0 \). \(\square \)

Theorem 2.9. \(\mathcal{G} \subseteq \mathcal{G}^- \).

Proof. Let \((h, k) \in \mathcal{G}^\perp \). We show \((h, k) \in \mathcal{G}^- \) by showing
\[
\int_{[0, 1]} h(x) dm_1(x) + \int_{[0, 1]} k(x) dm_2(x) = 0
\]
for all \((m_1, m_2) \in \mathcal{G}^\perp \). But, using Lemma 2.6 and Corollary 2.7, it suffices to show for each \(i \) and for each \((m_1, m_2) \in \mathcal{G}^\perp \)
\[
\int_{[a_i, b_i]} h(x) dm_1(x) + \int_{[a_i, b_i]} k(x) dm_2(x) = 0.
\]
So fix \(i \), and let \((m_1, m_2) \in \mathcal{F}^\perp\). Using (2.3.3) we have
\[
\int_{[a, b]} k(x) \, dm_2(x) = -\int_{[a, b]} k(x) \left(\int_{[x, 1]} \, dm_1(t) \right) \, dx
\]
\[
= -\int_{[a, b]} \left(\int_{[a, x]} k(t) \, dt \right) \, dm_1(x)
\]
\[
- \int_{[b, 1]} \left(\int_{[a, b]} k(t) \, dt \right) \, dm_1(x)
\]
by interchanging the order of integration. But, by assumption, \(h(y) - h(x) = \int_{(x, y]} k(t) \, dt \) for all \(x, y \in [a, b] \). Thus,
\[
\int_{[a, b]} k(x) \, dm_2(x) = -\int_{[a, b]} h(x) \, dm_1(x) + h(a_i) \int_{[a, b]} \, dm_1(x)
\]
\[
- h(b_i) \int_{(b, 1]} dm_1(x) + h(a_i) \int_{[a, 1]} \, dm_1(x)
\]
\[
= -\int_{[a, b]} h(x) \, dm_1(x) + h(a_i) \int_{[a, 1]} \, dm_1(x)
\]
\[
- h(b_i) \int_{(b, 1]} dm_1(x).
\]
So
\[
\int_{[a, b]} h(x) \, dm_1(x) + \int_{[a, b]} k(x) \, dm_2(x)
\]
\[
= h(a_i) \int_{[a, 1]} \, dm_1(x) - h(b_i) \int_{(b, 1]} \, dm_1(x) = 0
\]
by Lemma 2.8. \(\square \)

3. THE CLOSABILITY OF DIFFERENTIATION
AND SIMULTANEOUS APPROXIMATIONS

We conclude by describing when \(D \) is closable and when \(\mathcal{F}^- \) is all of \(C(E) \). The latter provides the solution to the approximation problem initially addressed.

Theorem 3.1. \(D \) is closable if and only if \(E = (\hat{E})^- \) (that is, \(E \) is the closure of its interior).

Proof. First suppose \((\hat{E})^- = E \). Let \((0 \oplus g) \in \mathcal{F}^-\). Then, by Theorem 2.2, \(g \equiv 0 \) on \(\hat{E} \). Thus, by continuity, \(g \equiv 0 \) on \((\hat{E})^- \).

Conversely, suppose \((\hat{E})^- \neq E \). Let \(x_0 \in E \setminus (\hat{E})^- \). By Urysohn's Lemma, there is a function \(g \), continuous on \(E \), so that \(g(x_0) = 1 \) and \(g(x) = 0 \) for all \(x \in (\hat{E})^- \). Now \((0, g) \in \mathcal{F} \), by Theorem 2.9, but is nonzero. Thus \(D \) is not closable. \(\square \)

Theorem 3.2. \(\mathcal{F}^- = C(E) \times C(E) \) if and only if \(\hat{E} = \emptyset \) (that is, \(E \) has empty interior).

Proof. If \(\hat{E} \neq \emptyset \), we have for \(h(x) \equiv 1 \) on \(E \), \((h \oplus h) \) is in \(C(E) \oplus C(E) \) but not in \(\mathcal{F}^- \). Conversely, if \(\hat{E} = \emptyset \), then there are no requirements on an element of \(C(E) \times C(E) \) to be in \(\mathcal{F} \). Thus \(\mathcal{F}^- = C(E) \times C(E) \). \(\square \)
A reformulation of Theorem 3.2 is as follows.

Corollary 3.3. If E is a compact subset of the real line and f and g are arbitrary continuous on E, then there is a sequence of polynomials $\{p_n\}$ so that $p_n \to f$ and $p_n' \to g$ uniformly on E if and only if E has empty interior.

REFERENCES

