Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Finitely additive Radon-Nikodým theorem and concentration function of a probability with respect to a probability


Authors: Patrizia Berti, Eugenio Regazzini and Pietro Rigo
Journal: Proc. Amer. Math. Soc. 114 (1992), 1069-1078
MSC: Primary 60A10; Secondary 28A25, 28A60
DOI: https://doi.org/10.1090/S0002-9939-1992-1045586-7
MathSciNet review: 1045586
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: An "exact" Radon-Nikodým theorem is obtained for a pair $ (m,\mu )$ of finitely-additive probabilities, using a notion of concentration function of $ \mu $ with respect to $ m$. In addition, some direct consequences of that theorem are examined.


References [Enhancements On Off] (What's this?)

  • [1] K. P. S. Bhaskara Rao and M. Bhaskara Rao, Theory of charges, Academic Press, London, 1983. MR 751777 (86f:28006)
  • [2] S. Bochner, Additive set functions on groups, Ann. Math. 40 (1939), 769-799. MR 0000669 (1:110e)
  • [3] D. Candeloro and A. Martellotti, A Radon-Nikodým theorem for finitely additive measures, Adv. in Math. (to appear).
  • [4] -, A Radon-Nikodým theorem for vector-valued finitely additive measures with closed range, Technical Report, Dip. Matematica, Universitá di Perugia, 1988.
  • [5] B. de Finetti, La struttura delle distribuzioni in un insieme astratto qualsiasi, Giorn. Ist. Ital. Attuari 18 (1955), 15-28; English transl., Probability, induction and statistics, J. Wiley, 1972. MR 0089247 (19:640a)
  • [6] N. Dunford and J. T. Schwartz, Linear operators, Part I: General theory, Wiley, New York, 1958. MR 1009162 (90g:47001a)
  • [7] A. A. Liapounoff, Sur les fonctions-vecteurs complètement additives, Izv. Akad. Nauk. SSSR 4 (1940), 465-478. (Russian) MR 0004080 (2:315e)
  • [8] H. B. Maynard, A Radon-Nikodým theorem for finitely additive bounded measures, Pacific J. Math. 83 (1979), 401-413. MR 557942 (80k:28007)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 60A10, 28A25, 28A60

Retrieve articles in all journals with MSC: 60A10, 28A25, 28A60


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1992-1045586-7
Keywords: Concentration function, extension, finitely-additive probability, Radon-Nikodým theorem
Article copyright: © Copyright 1992 American Mathematical Society

American Mathematical Society