Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

A comparison result for the oscillation of delay differential equations


Authors: G. Ladas, C. Qian and J. Yan
Journal: Proc. Amer. Math. Soc. 114 (1992), 939-947
MSC: Primary 34K15; Secondary 34C10
MathSciNet review: 1052575
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We obtain a comparison result for the oscillation of all solutions of the equation

$\displaystyle \dot y(t) + \sum\limits_{i = 1}^n {{q_i}(t)y(t - {\sigma _i}(t)) = 0} $

in terms of the oscillation of all solutions of the equation

$\displaystyle \dot x(t) + \sum\limits_{i = 1}^n {{p_i}(t)x(t - {\tau _i}(t)) = 0} $

under appropriate hypotheses on the asymptotic behavior of the quotients $ {p_i}(t)/{q_i}(t)$ and $ {\tau _i}(t)/{\sigma _i}(t)$ for $ i = 1,2, \ldots ,n$. An application to the oscillation of the nonautonomous delay-logistic equation is given.

References [Enhancements On Off] (What's this?)

  • [1] I. Győri and G. Ladas, Oscillation theory of delay differential equations, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1991. With applications; Oxford Science Publications. MR 1168471
  • [2] Jack Hale, Theory of functional differential equations, 2nd ed., Springer-Verlag, New York-Heidelberg, 1977. Applied Mathematical Sciences, Vol. 3. MR 0508721
  • [3] R. G. Koplatadze and T. A. Chanturia, On oscillatory and monotonous solutions of first order differential equation with deviating argument, Differential'nye Uravnienija 18 (1982), 1464-1465. (Russian)
  • [4] M. R. S. Kulenović, G. Ladas, and A. Meimaridou, On oscillation of nonlinear delay differential equations, Quart. Appl. Math. 45 (1987), no. 1, 155–164. MR 885177
  • [5] Man Kam Kwong and William T. Patula, Comparison theorems for first order linear delay equations, J. Differential Equations 70 (1987), no. 2, 275–292. MR 917624, 10.1016/0022-0396(87)90165-3
  • [6] B. G. Zhang and K. Gopalsamy, Oscillation and nonoscillation in a nonautonomous delay-logistic equation, Quart. Appl. Math. 46 (1988), no. 2, 267–273. MR 950601

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 34K15, 34C10

Retrieve articles in all journals with MSC: 34K15, 34C10


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1992-1052575-5
Article copyright: © Copyright 1992 American Mathematical Society