Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Real isometries between $ {\rm JB}\sp *$-triples


Author: T. Dang
Journal: Proc. Amer. Math. Soc. 114 (1992), 971-980
MSC: Primary 46L70; Secondary 17C65, 46L05
DOI: https://doi.org/10.1090/S0002-9939-1992-1056677-9
MathSciNet review: 1056677
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: It is shown that except for a certain class of JB*-triples (for which the result is false), real linear surjective isometries preserve the triple product. In particular, unital real linear isometries of $ {C^*}$-algebras are real linear Jordan $ ^*$-isomorphisms.


References [Enhancements On Off] (What's this?)

  • [1] T. Barton and R. Timoney, Weak* continuity on Jordan triple products and applications, Math. Scand. 59 (1986), 177-191. MR 884654 (88d:46129)
  • [2] T. Barton, T. Dang, and G. Horn, Normal representations of Banach Jordan triple systems, Proc. Amer. Math. Soc. 102 (1988), 551-555. MR 928978 (89c:46065)
  • [3] O. Bratteli and D. Robinson, Opertor algebras and quantum statistical mechanics 1, Springer, 1979. MR 887100 (88d:46105)
  • [4] T. Dang and Y. Friedman, Classification of JBW*-triple factors and applications, Math. Scand. 61 (1987), 292-330. MR 947480 (89g:46109)
  • [5] T. Dang, Y. Friedman, and B. Russo, Affine geometric proofs of the Banach Stone theorems of Kadison and Kaup, Proc. 1987 Great Plains Operators Theory Seminar, Rocky Mountain J. Math. (to appear). MR 1065839 (91j:46087)
  • [6] S. Dineen, Complete holomorphic vector fields on the second dual of a Banach space, Math. Scand. 59 (1986), 131-142. MR 873493 (88h:32029)
  • [7] C. M. Edwards and G. T. Rüttiman, On the facial structure of the unit balls in a JBW*triple and its predual, J. London Math. Soc.(2) 38 (1988), 317-332. MR 966303 (90b:46129)
  • [8] Y. Friedman and J. Hakeda, Additivity of quadratic maps, Publ. Res. Inst. Math. Sci., Kyoto Univ., vol. 24, Dec. 1988, pp. 707-722. MR 985272 (90d:46095)
  • [9] Y. Friedman and B. Russo, Structure of the predual of a J BW* triple, J. Reine Angew. Math. 356 (1985), 67-89. MR 779376 (86f:46073)
  • [10] -, The Gelfand-Naimark theorem for JB* triples, Duke Math. J. 53 (1986), 139-148. MR 835800 (87f:46086)
  • [11] -, A geometric spectral theorem, Quart. J. Math. Oxford Ser. (2) 37 (1986), 263-277. MR 854626 (87k:46145)
  • [12] L. Harris, Bounded symmetric homogeneous domains in infinite dimensional spaces, Lecture Notes in Math., vol. 364, Springer-Verlag, Berlin, 1973, pp. 13-40. MR 0407330 (53:11106)
  • [13] R. Kadison, Isometries of operator algebras, Ann. of Math. 54 (1951), 325-338. MR 0043392 (13:256a)
  • [14] W. Kaup, Über die Klassifikation der symmetrischen hermiteschen Mannigfaltigkeiten unendlicher Dimension, Math. Ann. 257 (1981), 463-483. MR 639580 (83e:32033)
  • [15] -, A Riemann mapping theorem for bounded symmetric domains in complex Banach spaces, Math. Z. 183 (1983), 503-529. MR 710768 (85c:46040)
  • [16] E. Neher, Jordan triple systems by the grid approach, Lecture Notes in Math., vol. 1280, Springer-Verlag, Berlin, 1987. MR 911879 (89b:17024)
  • [17] H. Upmeier, Symmetric Banach manifolds and Jordan $ {C^*}$-algebras, North-Holland, Amsterdam, 1985. MR 776786 (87a:58022)
  • [18] -, Jordan algebras in analysis, operator theory, and quatum mechanics, CBMS Regional Conf. Ser. in Math., vol. 67, Amer. Math. Soc., Providence, R.I., 1987. MR 874756 (88h:17032)
  • [19] J. Wright and M. Youngson, On isometries of Jordan aldgebras, Math. Proc. Cambridge Philos. Soc. 84 (1978), 263-272. MR 0493372 (58:12397)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 46L70, 17C65, 46L05

Retrieve articles in all journals with MSC: 46L70, 17C65, 46L05


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1992-1056677-9
Article copyright: © Copyright 1992 American Mathematical Society

American Mathematical Society