Dimensions of topological groups containing the bouquet of two circles
Author:
Takashi Kimura
Journal:
Proc. Amer. Math. Soc. 114 (1992), 1109-1113
MSC:
Primary 54F45; Secondary 22A05, 54C25
DOI:
https://doi.org/10.1090/S0002-9939-1992-1079892-7
MathSciNet review:
1079892
Full-text PDF
Abstract | References | Similar Articles | Additional Information
Abstract: In this paper we prove the following: If a topological group contains the bouquet
, then
holds. This is a counterexample to a question of Bel'nov in the one-dimensional case.
- [1] V. K. Bel'nov, Dimension of topologically homogeneous spaces and free homogeneous spaces, Soviet Math. Dokl. 19 (1978), 86-89. MR 0493947 (58:12901)
- [2] R. Engelking, Dimension theory, Polish Scientific, Warszawa, 1977. MR 0482696 (58:2753a)
- [3] K. Nagami, Dimension theory, Academic Press, New York and London, 1970. MR 0271918 (42:6799)
- [4] D. B. Shakhmatov, Closed embeddings into pseudocompact spaces preserving the covering dimension, Vestnik Moskov. Univ. Ser. I Mat. Mekh. 43 (1988), 69-71. MR 934549 (89e:54026)
- [5] -, Imbedding into topological groups preserving dimensions, Topology Appl. 36 (1990), 181-204. MR 1068169 (91i:54028)
- [6] -, A survey of current researches and open problems in the dimension theory of topological groups, Questions Answers Gen. Topology 8 (1990), 101-118. MR 1043208 (91d:54043)
- [7] P. Vopenka, On the dimension of compact spaces, Czechoslovak Math. J. 8 (1958), 319-327. MR 0102068 (21:863)
Retrieve articles in Proceedings of the American Mathematical Society with MSC: 54F45, 22A05, 54C25
Retrieve articles in all journals with MSC: 54F45, 22A05, 54C25
Additional Information
DOI:
https://doi.org/10.1090/S0002-9939-1992-1079892-7
Keywords:
Topological group,
dimension,
embedding,
bouquet,
graph
Article copyright:
© Copyright 1992
American Mathematical Society