Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Compact-like totally dense subgroups of compact groups


Authors: Dikran N. Dikranjan and Dmitrii B. Shakhmatov
Journal: Proc. Amer. Math. Soc. 114 (1992), 1119-1129
MSC: Primary 22C05; Secondary 22A05
DOI: https://doi.org/10.1090/S0002-9939-1992-1081694-2
MathSciNet review: 1081694
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A subgroup $ H$ of a topological group $ G$ is (weakly) totally dense in $ G$ if for each closed (normal) subgroup $ N$ of $ G$ the set $ H \cap N$ is dense in $ N$. We show that no compact (or more generally, $ \omega $-bounded) group contains a proper, totally dense, countably compact subgroup. This yields that a countably compact Abelian group $ G$ is compact if and only if each continuous homomorphism $ \pi :G \to H$ of $ G$ onto a topological group $ H$ is open. Here "Abelian" cannot be dropped. A connected, compact group contains a proper, weakly totally dense, countably compact subgroup if and only if its center is not a $ {G_\delta }$-subgroup. If a topological group contains a proper, totally dense, pseudocompact subgroup, then none of its closed, normal $ {G_\delta }$-subgroups is torsion. Under Lusin's hypothesis $ {2^{{\omega _1}}} = {2^\omega }$ the converse is true for a compact Abelian group $ G$. If $ G$ is a compact Abelian group with nonmetrizable connected component of zero, then there are a dense, countably compact subgroup $ K$ of $ G$ and a proper, totally dense subgroup $ H$ of $ G$ with $ K \subseteq H$ (in particular, $ H$ is pseudocompact).


References [Enhancements On Off] (What's this?)

  • [1] W. W. Comfort, Topological groups, Handbook of Set-theoretic Topology (K. Kunen and J. E. Vaughan, eds.) North-Holland, Amsterdam, New York, and Oxford, 1984, pp. 1143-1263. MR 776643 (86g:22001)
  • [2] W. W. Comfort and D. L. Grant, Cardinal invariants, pseudocompactness and minimality: some recent advances in the topological theory of topological groups, Topology Proc. 6 (1981), 227-265. MR 672457 (84b:54009)
  • [3] W. W. Comfort and L. C. Robertson, Cardinality constraints for pseudocompact and for totally dense subgroups of compact topological groups, Pacific J. Math. 119 (1985), 265-285. MR 803119 (87i:22002)
  • [4] W. W. Comfort and K. A. Ross, Pseudocompactness and uniform continuity in topological groups, Pacific J. Math. 16 (1966), 483-496. MR 0207886 (34:7699)
  • [5] W. W. Comfort and T. Soundararajan, Pseudocompact group topologies and totally dense subgroups, Pacific J. Math. 100 (1982), 61-84. MR 661441 (83m:22008)
  • [6] D. Dikranjan and Iv. Prodanov, Totally minimal topological groups, Annuaire Univ. Sofia Fac. Math. Méc. 69 (1974/75), 5-11. MR 562518 (81c:22003)
  • [7] D. Dikranjan, Iv. Prodanov, and L. Stoyanov, Topological groups: characters, dualities and minimal group topologies, Pure Appl. Math., vol. 130, Marcel Dekker, New York and Basel, 1989. MR 1015288 (91e:22001)
  • [8] V. Eberhardt and U. Schwanengel, $ {( {\mathbb{Q}/\mathbb{Z}} )^\mathbb{N}}$ est un groupe topologique minimal, Rev. Roumaine Math. Pures Appl. 27 (1982), 957-964. MR 683074 (84f:22002)
  • [9] R. Engelking, General topology, Warszawa, PWN, 1977. MR 0500780 (58:18316b)
  • [10] I. I. Guran, On minimal topological groups, in Topology and Set Theory, Udmurt State Univ., Izhevsk, 1982, pp. 64-71. (Russian) MR 760275 (85h:22002)
  • [11] E. Hewitt and K. Ross, Abstract harmonic analysis. I, Springer-Verlag, Berlin, Heidelberg, and New York, 1963. MR 0156915 (28:158)
  • [12] K. Kunen, Set theory. An introduction to independence proofs, Stud. Logic Foundations Math., vol. 102, North-Holland, Amsterdam, New York, and Oxford, 1980. MR 597342 (82f:03001)
  • [13] T. Soundararajan, Totally dense subgroups of topological groups, General Topology and Its Relations to Modern Analysis and Algebra III, Proc. Kanpur Topological Conf. 1968, Academia, Prague, 1971, pp. 299-300.
  • [14] N. Th. Varopoulos, A theorem on the continuity of homomorphisms of locally compact groups, Proc. Cambridge Philos. Soc. 60 (1964), 449-463. MR 0162880 (29:184)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 22C05, 22A05

Retrieve articles in all journals with MSC: 22C05, 22A05


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1992-1081694-2
Keywords: Compact group, countably compact group, pseudocompact group, totally minimal group, totally dense subgroup, $ {G_\delta }$-subgroup, Lusin's hypothesis
Article copyright: © Copyright 1992 American Mathematical Society

American Mathematical Society