A Liapunov function for three-dimensional feedback systems

Author:
Ji Fa Jiang

Journal:
Proc. Amer. Math. Soc. **114** (1992), 1009-1013

MSC:
Primary 93D15; Secondary 34C11

DOI:
https://doi.org/10.1090/S0002-9939-1992-1092922-1

MathSciNet review:
1092922

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: For a three-dimensional model of a positive feedback loop, Selgrade [11, 12] proved that every positive-time trajectory in the nonnegative orthant converges. Hirsch [6] gave another proof of this result under slightly different assumptions. This paper provides a new proof of Selgrade's result that is much shorter and presents a generalization that can be applied to positive and negative feedback loops and other systems.

**[1]**U. an der Heiden,*Existence of periodic solutions of a nerve equation*, Biol. Cybern.**21**(1976), 37-39. MR**0477293 (57:16828)****[2]**B. C. Goodwin,*Oscillatory behavior in enzymatic control processes*, in "Advances in Enzyme Regulation, vol. 3" (G. Weber, Ed.), Pergamon, Oxford, 1965.**[3]**J. S. Griffith,*Mathematics of cellular control processes*, I.*Negative feedback to one gene*, J. Theoret. Biol.**20**(1968), 202-208.**[4]**S. P. Hastings,*On the uniqueness and global asymptotic stability of periodic solutions for a third order system*, Rocky Mountain J. Math.**7**(1977), 513-538. MR**0470338 (57:10096)****[5]**M. W. Hirsch,*Systems of differential equations which are competitive or cooperative*II:*Convergence almost everywhere*, SIAM J. Math. Anal.**16**(1985), 423-439. MR**783970 (87a:58137)****[6]**-,*Systems of differential equations which are competitive or cooperative*V:*Convergence in**-dimensional systems*, J. Differential Equations**80**(1989), 94-106. MR**1003252 (92h:58110)****[7]**Jiang Ji-Fa,*On the asymptotic behavior of a class of nonlinear differential equations*, Nonlinear Anal. Theory, Methods and Applications**14**(1990), 453-467. MR**1041509 (91i:58118)****[8]**-,*The asymptotic behavior of a class of second-order differential equations with applications to electrical circuit equations*, J. Math. Anal. Appl.**149**(1990), 26-37. MR**1054791 (91f:34072)****[9]**J. P. LaSalle,*Stability theory for ordinary differential equations*, J. Differential Equations**4**(1968), 57-65. MR**0222402 (36:5454)****[10]**H. G. Othmer,*The qualitative dynamics of a class of biochemical control circuits*, J. Math. Biol.**3**(1976), 53-78. MR**0406568 (53:10355)****[11]**J. F. Selgrade,*Asymptotic behavior of solutions to single loop positive feedback systems*, J. Differential Equations**38**(1980), 80-103. MR**592869 (82a:34038)****[12]**-,*Mathematical analysis of a cellular control process with positive feedback*, SIAM J. Appl. Math.**36**(1979), 219-229. MR**524498 (80g:34046)****[13]**J. J. Tyson,*On the existence of oscillatory solutions in negative feedback cellular control processes*, J. Math. Biol.**1**(1975), 311-315. MR**0390383 (52:11209)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
93D15,
34C11

Retrieve articles in all journals with MSC: 93D15, 34C11

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1992-1092922-1

Keywords:
Positive and negative feedback systems,
convergence,
Liapunov function

Article copyright:
© Copyright 1992
American Mathematical Society