An estimate on the Ricci curvature of a submanifold and some applications

Author:
Pui Fai Leung

Journal:
Proc. Amer. Math. Soc. **114** (1992), 1051-1061

MSC:
Primary 53C40; Secondary 53C20

DOI:
https://doi.org/10.1090/S0002-9939-1992-1093601-7

MathSciNet review:
1093601

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We prove a best possible lower bound on the Ricci curvature of an immersed submanifold in a Euclidean space and apply it to study the size of the Gauss image of a complete noncompact hypersurface with constant positive mean curvature in a Euclidean space.

**[1]**S. Y. Cheng,*Spectrum of the Laplacian and its applications to differential geometry*, Ph.D. Dissertation, Univ. of California, Berkeley, 1974.**[2]**M. Gage,*Upper bounds for the first eigenvalue of the Laplace-Beltrami operator*, Indiana Univ. Math. J.**29**(1980), 897-912. MR**589652 (82b:58095)****[3]**D. Hoffman, R. Osserman, and R. Schoen,*On the Gauss map of complete surfaces of constant mean curvature in**and*, Comment. Math. Helv.**57**(1982), 519-531. MR**694604 (84f:53004)****[4]**D. Laugwitz,*Differential and Riemannian geometry*, Academic Press, 1965. MR**0172184 (30:2406)****[5]**P. F. Leung,*Minimal submanifolds in a sphere*, Math. Z.**183**(1983), 75-86. MR**701359 (85f:53052)****[6]**B. Palmer,*The Gauss map of a spacelike constant mean curvature hypersurface of Minkowski space*, Comment. Math. Helv.**65**(1990), 52-57. MR**1036127 (91a:53014)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
53C40,
53C20

Retrieve articles in all journals with MSC: 53C40, 53C20

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1992-1093601-7

Article copyright:
© Copyright 1992
American Mathematical Society