A NOTE ON A FIXED POINT THEOREM OF OKHEZIN

A. TOMINAGA

(Communicated by Dennis K. Burke)

Abstract. In 1985 V. P. Okhezin proved that the cartesian product of a B-space X and a compact metric AR space has the fixed point property. In this paper it is shown that the cone over X and the suspension of X have the fixed point property.

1. Introduction

A nest is a monotone, increasing sequence of sets. A B-space X is an arcwise connected T_2-space such that every nest of arcs of X is contained in an arc of X. A space S has the fixed point property (abbreviated FPP) if for every continuous mapping f of S into itself, there exists a point p of S such that $f(p) = p$.

In 1946 Young [9] proved that every B-space has FPP. In 1954 Borsuk [1] showed that every arcwise connected, hereditarily unicoherent continuum X is a B-space and proved that X has FPP by a different method than Young's. In 1969 Holsztyński [3] generalized the above Young's result by a method similar to Borsuk's method. The "B-space" named by Holsztyński derives from Borsuk-Young arcwise connected space.

In 1985 Okhezin [5] verified that the cartesian product of a B-space and a compact metric AR space has FPP. In this note we shall prove the following theorem by his method.

Theorem. Let X be a B-space and Y a compact metric AR space. Let F be a closed subset of Y, which may be empty. Define an equivalence relation \sim in the cartesian product $X \times Y$ by $(x, y) \sim (x', y)$ for every $y \in F$ and any $x, x' \in X$. Then the quotient space $Q(X) = (X \times Y) / \sim$ has FPP.

Corollary 1 [5]. The cartesian product of a B-space and a compact metric AR space has FPP.

Corollary 2. The cone over a B-space has FPP.

Corollary 3. The suspension of a B-space has FPP.
2. PRELIMINARY LEMMAS

From the definition of B-space we can easily get

Lemma 1. A B-space X is uniquely arcwise connected, that is, for any two points x, y of X there is a unique arc in X with end points x, y.

Definition 1 [8]. Let X be a connected T_1-space. A nonempty subset T of X is an A-set if $X \setminus T$ is the union of a collection $\{C\}$ of open sets each having a single point $q \in T$ as its boundary

\[X \setminus T = \bigcup C, \quad \text{Bd } C = q \in T. \]

If X is locally connected, then we may take all components of $X \setminus T$ as $\{C\}$.

Lemma 2. Let X be a locally arcwise connected B-space. If T is an arcwise connected, closed subset of X then it is an A-set.

Proof. Since T is closed and X is locally connected, every component C of $X \setminus T$ is open. Then $\text{Bd } C$ consists of only one point. For, on the contrary, let x_1, x_2 be distinct points of $\text{Bd } C$. Since X is Hausdorff, there exist disjoint neighborhoods U_i of x_i ($i = 1, 2$). Then a point $y_i \in U_i \cap C$ can be joined to x_i by an arc α_i in U_i. Let β be an arc in T joining x_1 to x_2 and γ an arc in C joining y_1 to y_2. Then $\alpha_1 \cup \beta \cup \alpha_2 \cup \gamma$ contains a simple closed curve, contrary to Lemma 1. \Box

Definition 2. Let T be an A-set of a connected T_1-space X. Then define a function $r : X \to T$ by

\[r(x) = \begin{cases} x & x \in T, \\ q = \text{Bd } C & x \in C. \end{cases} \]

If X is locally connected, then r is a continuous mapping [8] called the canonical retraction of X onto T.

We easily have

Lemma 3. Let X be a locally connected B-space, T an A-set of X, and $r : X \to T$ the canonical retraction of X onto T. Define $R : \mathcal{Q}(X) \to \mathcal{Q}(T)$ by $R((x, y)) = (r(x), y)$, where (x, y) is the equivalence class of $(x, y) \in X \times Y$. Then R is a retraction of $\mathcal{Q}(X)$ onto $\mathcal{Q}(T)$, called the retraction associated with r.

Definition 3. A countable fan is homeomorphic to the union of the closed line segments in the Euclidean plane \mathbb{R}^2 joining the origin $(0, 0)$ to the point $(1, 1/n)$ ($n = 1, 2, \ldots$). A countable comb is homeomorphic to the subspace C_0 of \mathbb{R}^2 constructed as follows: Erect at $(1/n, 0)$ ($n = 1, 2, \ldots$) in \mathbb{R}^2 a perpendicular interval of length one. Then C_0 is the union of the erected intervals and the unit interval with end points $(0, 0), (1, 0)$.

Lemma 4 (cf. [4, p. 84]). Let X be a B-space and T an arcwise connected subset of X with infinitely many end points. Then T contains a countable fan or a countable comb.

Proof. The arc in X with end points x, y is denoted by $[x, y]$. Define $(x, y) = [x, y] \setminus \{x, y\}$. Now pick a base point $a_1 \in T$. According to [4] we first introduce an order \preceq in T by the rule: $x \preceq y$ if and only if $x \in [a_1, y]$.
For $x \in T$, $M(x) = \{ y \in T | x \leq y \}$ and $L(x) = \{ y \in T | y \leq x \}$. The notation $x \land y$ means the point $\sup \{ L(x) \cap L(y) \}$. A branch B at x is a subset of $M(x)$ that is maximal with respect to the property: If $y, z \in B \setminus \{ x \}$ then $y \land z \in B \setminus \{ x \}$. Note that every maximal element of T is an end point of T and the only other possible end point of T is a_1.

Assume that T contains neither countable fan nor countable comb. Then there are only finitely many branches at a_1. For if not, there would be a countable fan in T. Hence a branch B_1 at a_1 has infinitely many end points. Let m_1 be one of these end points. The arc $[a_1, m_1]$ contains only finitely many branch points. For if not, there would exist a countable comb.

Inductively we can construct three sequences $\{m_i\}$, $\{a_i\}$, and $\{B_i\}$ with the following properties:

1. B_i is a branch at the point a_i with infinitely many end points.
2. m_i is an end point of B_i.
3. $a_{i+1} \in \{a_i, m_i\}$.

Denote the arc $\bigcup_{i=2}^{n}[a_i, a_{i+1}]$ by A_n $(n \geq 2)$. Since X is a B-space, the nest $\{A_n : n \geq 1\}$ of arcs is contained in an arc of X. Let $\lim a_i = a$. Then the set $(U_{n=2}^{\infty}A_n) \cup (\bigcup_{i=1}^{\infty}[a_{i+1}, m_i]) \cup \{a\}$ is a countable comb, which is a contradiction. Thus X contains a countable fan or a countable comb. □

Lemma 5. Let X, Y, and F be as in Theorem. Let T be a finite tree in X and define $Q(T)$ in the same way as $Q(X)$. Then $Q(T)$ has FPP.

Proof. If $F = Y$ then $Q(T)$ is homeomorphic to Y, and hence $Q(T)$ has FPP. If $F = \phi$ then $Q(T) = T \times Y$, and hence $Q(T)$ is a compact metric AR space. Therefore $Q(T)$ has FPP.

For the other case, suppose that T is contained in the unit disk D of the Euclidean plane. Let ψ be a retraction of D onto T. We may assume that $\max d(y, F) \leq 1$ for $y \in Y$, where d is a metric on Y. Then the set $H = \{(d(y, F) \cdot x, y)(x, y) \in D \times Y\}$ is homeomorphic to $Q(D)$, which is defined in the same way as $Q(X)$, and the subset $K = \{(d(y, F) \cdot x, y)(x, y) \in T \times Y\}$ of H is homeomorphic to $Q(T)$. Obviously H is a retract of $D \times Y$. Since $D \times Y$ has FPP, so does H. Furthermore a retraction $g : H \rightarrow K$ is defined by

$$g((x, y)) = \begin{cases} (d(y, F) \cdot \psi(x/d(y, F)), y) & d(y, F) \neq 0, \\ (x, y) & d(y, F) = 0. \end{cases}$$

Hence K has FPP and so does $Q(T)$. □

3. Key lemma

Lemma 6. Let X be a locally arcwise connected B-space and $Q(X)$ the same as in Theorem. Then $Q(X)$ has FPP.

Proof. Let K be the set $\{(x, y) \in Q(X) | y \in F\}$. Then $Q(X) \setminus K$ is homeomorphic to $X \times (Y \setminus F)$. Let $\pi : Q(X) \setminus K \rightarrow X$ and $p : Q(X) \rightarrow Y$ be the projections defined by $\pi((x, y)) = x$ and $p((x, y)) = y$, respectively.

Now let $f : Q(X) \rightarrow Q(X)$ be any continuous mapping of $Q(X)$ into itself. On the contrary, suppose that f has no fixed point. To lead to a contradiction, we shall divide our argument into four steps.

Step 1. We construct a sequence $\{z_n\}$ of points in $Q(X)$ and a nest $\{T_n\}$ of finite trees in X satisfying the following four conditions.
(3.1) \(R_n f(z_n) = z_n \quad (n \geq 1) \), where \(R_n : Q(X) \to Q(T_{n-1}) \) is the retraction associated with the canonical retraction \(r_n : X \to T_{n-1} \), and neither \(z_n \) nor \(f(z_n) \) belong to \(K \).

(3.2) \(\pi(z_n) \in T_{n-1} \) and \(\pi(f(z_n)) \notin T_{n-1} \quad (n \geq 1) \).

(3.3) \(T_{n-1} \cap [\pi(z_n), \pi(f(z_n))] = \{\pi(z_n)\} \).

(3.4) \(T_n = \bigcup_{i=1}^{n} [\pi(z_i), \pi(f(z_i))] \).

The sequences \(\{z_n\} \) and \(\{T_n\} \) are inductively obtained in the following manner.

Let \(T_0 \) be any point of \(X \). Since \(Q(T_0) \) is homeomorphic to \(Y \), it has FPP. By Lemma 3, the restriction \(R_1 f|Q(T_0) \) is continuous. Therefore there exists a point \(z_1 \in Q(T_0) \) such that \(R_1 f(z_1) = z_1 \). By our assumption that \(f \) has no fixed point, neither \(z_1 \) nor \(f(z_1) \) belong to \(K \). Note that \(\pi(z_1) = T_0 \) and put \(T_1 = [\pi(z_1), \pi(f(z_1))] \).

For positive integer \(n \), since \(Q(T_{n-1}) \) has FPP by Lemma 5 and \(R_n f|Q(T_{n-1}) : Q(T_{n-1}) \to Q(T_{n-1}) \) is continuous, there exists a point \(z_n \in Q(T_{n-1}) \) such that \(R_n f(z_n) = z_n \). Since \(f \) has no fixed point by our assumption, neither \(z_n \) nor \(f(z_n) \) are in \(K \).

Clearly \(\pi(z_n) \in T_{n-1} \). However \(\pi(f(z_n)) \notin T_{n-1} \). For if not, \(f(z_n) \in Q(T_{n-1}) \) and \(R_n f(z_n) = f(z_n) \) because \(R_n : Q(X) \to Q(T_{n-1}) \) is a retraction. Therefore \(f(z_n) = z_n \), a contradiction. From (3.1) it follows that \(r_n \pi(f(z_n)) = \pi(z_n) \). Hence by the definition of \(r_n \) we have \(T_{n-1} \cap [\pi(z_n), \pi(f(z_n))] = \{\pi(z_n)\} \).

Put \(T_0 = T_{n-1} \cup [\pi(z_n), \pi(f(z_n))] \).

Step 2. By our construction, the set \(T = \bigcup_{n=1}^{\infty} T_n \) has the following four properties.

(3.5) For \(n < m \), \([\pi(z_n), \pi(f(z_n))] \cap [\pi(z_m), \pi(f(z_m))] \) is empty or \(\{\pi(z_m)\} \).

(3.6) If \(e \) is an end point of \(T \) then \(e = \pi(z_1) \) or \(e = \pi(f(z_n)) \) for some integer \(n \).

(3.7) If \(b \) is a branch point of \(T \) then \(b = \pi(z_n) \) for some integer \(n \).

(3.8) If \(b \) is a branch point of \(T \) whose order is infinite, then there is an increasing sequence of integers \(n_1 < n_2 < \cdots \) such that \(\pi(z_n) = b \).

Step 3. If a subsequence \(\{z_{n_k}\} \) of \(\{z_n\} \) converges to a point \(z \), then (3.9) and (3.10) hold.

(3.9) \(pf(z) = p(z) \) and neither \(z \) nor \(f(z) \) are in \(K \). For, \(pf(z_{n_k}) = p(z_{n_k}) \) by (3.1) and hence \(pf(z) = \lim pf(z_{n_k}) = \lim p(z_{n_k}) = p(z) \). Suppose, on the contrary, that \(z \in K \). Then \(pf(z) = p(z) \in F \). Therefore \(f(z) = z \), a contradiction. Similarly \(f(z) \) is not in \(K \).

(3.10) There exists no arc \(\alpha \) of \(X \) such that \(\pi(z_{n_k}) \in \alpha \cap T \quad (i \geq 1) \).

Suppose, on the contrary, that there exists such an arc \(\alpha \). By (3.9) there exist \(\pi(z) \) and \(pf(z) \). Since \(p f(z) = p(z) \) and \(f(z) \neq z \), it holds that \(\pi f(z) \neq \pi(z) \). Since \(X \) is Hausdorff, there exist disjoint neighborhoods \(U, V \) of \(pf(z) \), \(\pi(z) \) in \(X \), respectively. Let \(U_1 \) be a neighborhood of \(\pi f(z) \) such that \(U_1 \subset U \) and each pair of points in \(U_1 \) can be joined by an arc in \(U \). Since the map \(\pi f \) is continuous, we can find a neighborhood \(M \) of \(\pi(z) \) in \(\alpha \) and a neighborhood \(N \) of \(p(z) \) in \(Y \setminus F \) such that \(\pi f(M \times N) \subset U_1 \). Let \(z_{n_k}, z_{n_k}, z_{n_k} \) be in \(M \times N \). Then \(\pi(z_{n_k}), \pi(z_{n_k}), \pi(z_{n_k}) \) are in \(M \) and \(\pi f(z_{n_k}), \pi f(z_{n_k}) \) are distinct points in \(\pi f(M \times N) \) by (3.2) and (3.3). Let \(\beta \) be an arc in \(U \) joining \(\pi f(z_{n_k}) \) to \(\pi f(z_{n_k}) \). The set \(\{\pi(z_{n_k}), \pi f(z_{n_k})\} \cup \beta \cup \{\pi f(z_{n_k}), \pi f(z_{n_k})\} \) contains a simple closed curve in \(X \), which contradicts Lemma 1.
Step 4. If the end points of T are finite in number, by the construction of T there exists a subsequence $\{z_{n_i}\}$ of $\{z_n\}$ such that $[\pi(z_{n_i}), \pi(z_{n_{i+1}})]$, $i > 1$ is a nest of arcs. Let α be an arc of X containing this nest. We may suppose that $\{\pi(z_{n_i})\}$ and $\{\rho(z_{n_i})\}$ converge to $a \in X$ and $y \in Y$, respectively. Put $(a, y) = z$. Then $\lim z_{n_i} = z$. This contradicts (3.10).

If the end points of T are infinite in number, by Lemma 4 there exists a countable fan or a countable comb in T. For a countable fan with branch point b, by (3.8) there is an increasing sequence of integers $n_1 < n_2 < \cdots$ such that $\pi(z_{n_i}) = b$. We may suppose that $\{\rho(z_{n_i})\}$ converges to a point $y \in Y$. Then $\lim z_{n_i} = (b, y)$. The point b is contained in an arc of X, contrary to (3.10).

For a countable comb $C \subset T$, let $h: C_0 \to C$ be a homeomorphism of C_0 onto C, where C_0 is the subset of R^2 in Definition 3. Let $a = h((0, 0))$. By (3.7) we may put $\pi(z_{n_i}) = h((1/k, 0))$ and assume that $\{\rho(z_{n_i})\}$ converges to $y \in Y$. Then $\lim z_{n_i} = (a, y)$. The sequence $\{\pi(z_{n_i})\}$ is contained in the arc $\alpha = [a, \pi(z_{n_i})]$ of X, which violates (3.10). \(\square\)

4. Proof of Theorem

Definition 4. Let S be a subset of an arcwise connected space. An arc component of S is a maximal arcwise connected subset of S. Young's arc topology [9, 6] is the topology with the arc components of open sets of the given topology as basis.

Let (X, τ) be a B-space with topology τ and $Q(X, \tau)$ the quotient space in the theorem. Let $f: Q(X, \tau) \to Q(X, \tau)$ be any continuous mapping and λ be Young's arc topology on X. Then (X, λ) is a locally arcwise connected T_2-space. The mapping $f: Q(X, \lambda) \to Q(X, \tau)$ is continuous, because λ is finer than τ. Since $Q(X, \lambda)$ is Hausdorff, the image of any arcwise connected subset under $f: Q(X, \lambda) \to Q(X, \tau)$ is arcwise connected. Hence the mapping $f: Q(X, \lambda) \to Q(X, \lambda)$ is continuous and has a fixed point by Lemma 6. Thus $Q(X, \tau)$ has FPP.

REFERENCES

Faculty of Engineering, Kinki University, Hiro-Machi, Kure-shi, Hiroshima 737-01, Japan