Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A note on a fixed point theorem of Okhezin


Author: A. Tominaga
Journal: Proc. Amer. Math. Soc. 114 (1992), 1139-1143
MSC: Primary 54H25
DOI: https://doi.org/10.1090/S0002-9939-1992-1093606-6
MathSciNet review: 1093606
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In 1985 V. P. Okhezin proved that the cartesian product of a $ B$-space $ X$ and a compact metric AR space has the fixed point property. In this paper it is shown that the cone over $ X$ and the suspension of $ X$ have the fixed point property.


References [Enhancements On Off] (What's this?)

  • [1] K. Borsuk, A theorem on fixed points, Bull. Acad. Polon. Sci. 2 (1954), 17-20. MR 0064393 (16:275h)
  • [2] -, Theory of retracts, Monograf. Mat. vol. 44, Warszawa, 1967.
  • [3] W. Holsztyński, Fixed points of arcwise connected spaces, Fund. Math. 64 (1969), 289-312. MR 0248757 (40:2008)
  • [4] T. B. Muenzenberger and R. E. Smithon, The structure of nested spaces, Trans. Amer. Math. Soc. 201 (1975), 57-87. MR 0355995 (50:8468)
  • [5] V. P. Okhezin, Fixed-point theorems on products of spaces, Studies in Functional Analysis and its Applications, Ural. Gos. Univ., Sverdlovsk, 1985, pp. 72-80. (Russian) MR 839476 (87h:54089)
  • [6] R. E. Smithson, Changes of topology and fixed points for multi-valued functions, Proc. Amer. Math. Soc. 16 (1965), 448-454. MR 0175108 (30:5293)
  • [7] L. E. Ward, Jr., A fixed point theorem for chained spaces, Pacific J. Math. 9 (1959), 1273-1278. MR 0108784 (21:7496)
  • [8] G. T. Whyburn, Inward motions in connected spaces, Proc. Nat. Acad. Sci. U.S.A. 63 (1969), 271-274. MR 0264634 (41:9225)
  • [9] G. S. Young, Jr., The introduction of local connectivity by change of topology, Amer. J. Math. 68 (1946), 479-494. MR 0016663 (8:49c)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 54H25

Retrieve articles in all journals with MSC: 54H25


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1992-1093606-6
Keywords: $ B$-space, fixed point property, cone, suspension
Article copyright: © Copyright 1992 American Mathematical Society

American Mathematical Society