Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Measurable linear functionals and operators on Fréchet spaces


Author: Andrzej Wiśniewski
Journal: Proc. Amer. Math. Soc. 114 (1992), 1079-1085
MSC: Primary 60B11; Secondary 46G12, 47B38
DOI: https://doi.org/10.1090/S0002-9939-1992-1100667-4
MathSciNet review: 1100667
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The structure of measurable linear functionals and operators on Fréchet spaces with so-called stochastic bases is described.


References [Enhancements On Off] (What's this?)

  • [1] R. Cameron and R. Graves, Additive functionals on a space of continuous functions. I, Trans. Amer. Math. Soc. 70 (1951), 160-176. MR 0040590 (12:718e)
  • [2] Dang Hung Thang and Nguen Zui Tien, On symmetric stable measures with discrete spectral measure on Banach spaces, Lecture Notes in Math., vol. 828, Springer-Verlag, Berlin, Heidelberg, and New York, 1980, pp. 286-301. MR 611731 (82f:60018)
  • [3] W. Herer, Stochastic bases in Fréchet spaces, Demonstratio Math. 14 (1981), 719-723. MR 663121 (83k:46012)
  • [4] J. Hoffman-Jørgensen, Integrability of seminorms, the 0-1 law and the affine kernel for product measures, Studia Math. 61 (1977), 137-159. MR 0464382 (57:4313)
  • [5] K. Ito and M. Nisio, On the convergence of sums of independent Banach space valued random variables, Osaka Math. J. 5 (1968), 35-48. MR 0235593 (38:3897)
  • [6] M. Kanter, Random linear functionals and why we study them, Lecture Notes in Math., vol. 645, Springer-Verlag, Berlin, Heidelberg, and New York, 1978, pp. 114-123. MR 502433 (80f:60066)
  • [7] M. Loeve, Probability theory, 3rd ed., van Nostrand, Toronto, New York, and London, 1963. MR 0203748 (34:3596)
  • [8] Nguen Zui Tien, The structure of measurable linear functionals for Gaussian measures on Banach spaces, Teor. Veroyatnost. i Primenen. 23 (1978), 165-168. (Russian)
  • [9] Y. Okazaki, Stochastic basis in Fréchet space, Math. Ann. 274 (1986), 379-383. MR 842619 (88c:46052)
  • [10] A. V. Skorohod, Integration in Hilbert spaces, Springer-Verlag, Berlin, Heidelberg, and New York, 1974. MR 0466482 (57:6360)
  • [11] K. Urbanik, Random linear functionals and random integrals, Colloq. Math. 33 (1975), 255-263. MR 0400324 (53:4159)
  • [12] A. Wiśniewski, Measurable linear operators on Banach spaces, Colloq. Math. 54 (1987), 261-265. MR 948518 (90b:46094)
  • [13] -, Measurable linear functionals and operators on Fréchet spaces, Fifth Internat. Vilnius Conf. on Probab. Theory Math. Stat., Abstracts of Comm., T.II, Vilnius, 1989, pp. 227-228.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 60B11, 46G12, 47B38

Retrieve articles in all journals with MSC: 60B11, 46G12, 47B38


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1992-1100667-4
Keywords: Measurable linear functionals, measurable linear operators, Fréchet space, Gaussian measure, stable measure, product measure
Article copyright: © Copyright 1992 American Mathematical Society

American Mathematical Society