Approximation of convex bodies by triangles

Author:
Marek Lassak

Journal:
Proc. Amer. Math. Soc. **115** (1992), 207-210

MSC:
Primary 52A10; Secondary 52A27

DOI:
https://doi.org/10.1090/S0002-9939-1992-1057956-1

MathSciNet review:
1057956

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We show that for every plane convex body there exist a triangle and its image under a homothety with ratio such that . We prove the conjecture of Grünbaum that if is centrally symmetric, then can be chosen so that their centroids coincide with the center of .

**[1]**E. Asplund,*Comparison between plane symmetric convex bodies and parallelograms*, Math. Scand.**8**(1960), 171-180. MR**0125495 (23:A2796)****[2]**A. S. Besicovitch,*Measure of assymetry of convex curves*, J. London Math. Soc.**23**(1945), 237-240. MR**0027543 (10:320r)****[3]**H. G. Eggleston,*Convexity*, Cambridge Univ. Press, Cambridge, 1969. MR**0124813 (23:A2123)****[4]**B. Grünbaum,*Measures of symmetry of convex sets*, Convexity, Proc. Sympos. Pure Math., vol. 7, Amer. Math. Soc., Providence, R. I., 1963, pp. 233-270. MR**0156259 (27:6187)****[5]**M. Lassak,*Approximation of convex bodies by centrally symmetric bodies*, J. London Math. Soc. (2)**40**(1989), 369-377. MR**1044283 (91a:52001)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
52A10,
52A27

Retrieve articles in all journals with MSC: 52A10, 52A27

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1992-1057956-1

Article copyright:
© Copyright 1992
American Mathematical Society