A GEOMETRIC INTERPRETATION OF SEGAL'S INEQUALITY $\|e^{X+Y}\| \leq \|e^{X/2}e^Ye^{X/2}\|

G. CORACH, H. PORTA, AND L. RECHT

(Communicated by Paul S. Muhly)

Abstract. It is shown that the exponential mapping of the manifold of positive elements of a C^*-algebra (provided with its natural connection) increases distances (when measured in the natural Finsler structure). The proof relies on Segal's inequality $\|e^{X+Y}\| \leq \|e^{X/2}e^Ye^{X/2}\|$, valid for all symmetric X, Y in any C^*-algebra. In turn, this geometric inequality implies Segal's inequality.

Let A be a C^*-algebra with 1 and denote by A^+ the set of positive invertible elements of A. Then A^+ is an open subset of A^+, the real Banach space of symmetric elements in A, and therefore, the tangent space T_aA^+ to the manifold A^+ at $a \in A^+$ can be identified to A^+. The manifold A^+ carries a natural Finsler metric (see [1]) defined by $\|X\|_a = \|a^{-1/2}Xa^{-1/2}\|$ for $X \in TA^+_a$. This norm corresponds to the following interpretation: assume A is faithfully represented in a Hilbert space $(L, (\ , \))$, and for each $a \in A^+$, define an inner product in L by $(\xi, \eta)_a = (a^{-1/2}\xi, \eta)$. On the other hand, each $X \in TA^+_a$ determines the bilinear form $B(\xi, \eta) = (X\xi, \eta)$ on L. Then the Finsler norm $\|X\|_a$ coincides with the norm of the bilinear form B in the Hilbert space $(L, (\ , \))$.

The group G of invertible elements of A acts on A^+ by $\mathcal{M}_g a = (g^*)^{-1}ag^{-1}$, $(g \in G, a \in A^+)$ making A^+ into a reductive homogeneous space (see [2]) with the natural connection given by

$$D_X Y = X(Y) - \frac{1}{2}(Xa^{-1}Y + Ya^{-1}X),$$

where $X(Y)$ denotes the derivative of the field Y in the direction X in the Banach space A^+. In this connection, the geodesic γ with $\gamma(0) = a$ and $\dot{\gamma}(0) = X$ has the form $\gamma(t) = e^{tXa^{-1/2}}ae^{tXa^{-1/2}}$.

Further, for each $g \in G$ and $a \in A^+$, the map g is an isometry from the Hilbert space $(L, (\ , \))$ onto $(L, (\ , \))_{g,a}$ and consequently the tangent map $(T\mathcal{M}_g)_a : TA^+_a \to TA^+_{g,a}$ is an isometry for the Finsler metric.

The geometry of A^+ in this setting was studied in [1] where, in particular, the following result is proved [1, Theorem 6.3]: the distance $d(a, b)$ in the Finsler metric defined by $d(a, b) = \inf\{\text{length}(\gamma) ; \gamma$ joins a to $b\}$,
is given by \(d(a, b) = \text{length of the unique geodesic in } A^+ \text{ joining } a \text{ to } b \), i.e.,

\[d(a, b) = \|X\|_a \text{ where } b = e^{Xa^{-1/2}ae^{-a^{-1}x/2}}. \]

Notice that the Finsler structure in \(A^+ \) does not come from a Riemannian metric. However, \(A^+ \) shares with Riemannian manifolds of nonpositive curvature the following metric property, which is the main result of this note.

Theorem 1. For each \(a \in A^+ \), the exponential map \(\exp_a : TA_a \to A^+ \) increases distances in the sense that

\[d(\exp_a X, \exp_a Y) \geq \|X - Y\|_a \]

for all \(X, Y \in TA_a \).

Proof. Since \(G \) acts isometrically, it suffices to prove the inequality for \(a = 1 \).

Set \(x = \exp_1 X = e^X \), \(y = \exp_1 Y = e^Y \). The geodesic that joins \(x \) to \(y \) in time 1 has the formula

\[y(t) = e^{Zx^{-1/2}x^{-1/2}Zt/2}, \]

where \(b = y(1) = e^{Zx^{-1/2}x^{-1/2}Zt/2} \). The inequality we are after is

\[\|X - Y\| \leq \|Z\|_x = \|x^{-1/2}Zx^{-1/2}\| \]

or

\[\|\log x - \log y\| \leq \|x^{-1/2}Zx^{-1/2}\|. \]

But

\[x^{-1/2}yx^{-1/2} = x^{-1/2}(e^{Zx^{-1/2}x^{-1/2}Z/2})x^{-1/2} = e^{(x^{-1/2}Zx^{-1/2})/2}e^{(x^{-1/2}Zx^{-1/2})/2}x^{-1/2} = e^{x^{-1/2}Zx^{-1/2}}. \]

Then \(x^{-1/2}Zx^{-1/2} = \log(x^{-1/2}yx^{-1/2}) \) so we must prove \(\|\log x - \log y\| \leq \|\log(x^{-1/2}yx^{-1/2})\| \) or, changing \(x \) into \(x^{-1} \),

\[\|\log x + \log y\| \leq \|\log(x^{-1/2}yx^{-1/2})\|. \]

Replacing \(x, y \) by \(kx, ky \) with \(k \) a large positive number allows us to assume without loss of generality that \(\log x \geq 0 \) and \(\log y \geq 0 \). Then, the last inequality is equivalent to

\[\|e^{\log x + \log y}\| \leq \|x^{1/2}yx^{1/2}\|. \]

But this is equivalent to Segal's inequality (see [3, Theorem X.57, p. 260, vol. II], or [4])

\[\|e^{X+Y}\| \leq \|e^{X/2}e^Ye^{X/2}\| \]

and this concludes the proof of Theorem 1. Obviously all steps in the proof can be reversed, so that \((**) \) implies \((*) \).

As an application of Theorem 1, consider a \(C^* \)-algebra \(A \) with a distinguished family \(p_1, p_2, \ldots, p_n \) of selfadjoint orthogonal projections satisfying \(p_ip_j = 0 \) if \(i \neq j \) and \(p_1 + p_2 + \cdots + p_n = 1 \). Let \(B \subset A \) be the \(C^* \)-subalgebra of elements of \(A \) that commute with all \(p_i \) and \(H \subset A \) be the Banach subspace of elements \(h \in A \) satisfying \(p_ihp_i = 0 \) for each \(i \). Let also \(E = \{e^h : h = h^* \in H\} \).
Theorem 2. For each $b > 0$ in B, the distance (in the Finsler metric) from b to the submanifold $E \subset A^+$ is attained at $1 \in E$.

Proof. Set $X = \log b$. By definition $X = X_1 + \cdots + X_n$, where $X_i = p_i X_p_i$. Since $\|X\| = \max \|X_i\|$, we can assume that $\|X\| = \|X_1\|$, and accordingly, we choose a faithful representation of A in a Hilbert space L with the additional property that, setting $L = L_1 \oplus \cdots \oplus L_n$ with $L_i = p_i(L)$, the subspace L_1 contains a "norming eigenvector" for X_1, i.e., a unit vector $\xi \in L_1$ with $X_1 \xi = \pm \|X_1\| \xi$. Let Y be an arbitrary selfadjoint element of H. Then, by the definition of H, $Y \xi \in L_2 \oplus \cdots \oplus L_n$ and therefore $X \xi = X_1 \xi$ is perpendicular to $Y \xi$. As a consequence we have

$$d(b, 1) = \|X\| = \|X \xi\| \leq \|X_1 \xi - Y \xi\| \leq \|X - Y\|.$$

Then using Theorem 1, we conclude that $d(b, 1) \leq d(b, e^Y)$ and we are done.

Remark. Notice that the tangent map to \exp also increases norms. In fact it suffices to show this property for $a = 1$. For that we estimate

$$\left\| \frac{e^{Y+tZ} - e^Y}{t} \right\|_{e^Y} = \frac{1}{t} \| e^{-Y/2} e^{Y+tZ} e^{-Y/2} - I \|$$

using Segal's inequality $\| e^{-Y/2} e^{Y+tZ} e^{-Y/2} - e^{t \|Z\|} \| \geq \| e^{t \|Z\|} \|$. Assume that $t > 0$ and that $\max \text{Spec}(Z) = \|Z\|$. Then $\| e^{t \|Z\|} \| = e^{t \|Z\|} \geq 1$. Hence in this case

$$\frac{1}{t} \| e^{-Y/2} e^{Y+tZ} e^{-Y/2} - I \| = \frac{1}{t} (\| e^{t \|Z\|} - 1 \|) \geq \frac{1}{t} (\| e^{t \|Z\|} - 1 \|) \geq \|Z\|.$$

Then

$$\lim_{t \to 0^+} \left\| \frac{e^{Y+tZ} - e^Y}{t} \right\|_{e^Y} \geq \|Z\|.$$

For other Z's, change Z into $-Z$.

References

Instituto Argentino de Matemática, Buenos Aires, Argentina

Department of Mathematics, University of Illinois, Urbana, Illinois 61801-2975

Universidad Simón Bolívar, Caracas, Venezuela

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use