Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Bound on the extreme zeros of orthogonal polynomials

Authors: Mourand E. H. Ismail and Xin Li
Journal: Proc. Amer. Math. Soc. 115 (1992), 131-140
MSC: Primary 33C45; Secondary 26C10, 33C15
MathSciNet review: 1079891
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Using chain sequences we formulate a procedure to find upper (lower) bounds for the largest (smallest) zero of orthogonal polynomials in terms of their recurrence coefficients. We also apply our method to derive bounds for extreme zeros of the Laguerre, associated Laguerre, Meixner, and Meixner-Pollaczek polynomials. In addition, we consider bounds for the extreme zeros of Jacobi polynomials of degree $ n$ and parameters $ {a_n}$ and $ {b_n}$.

References [Enhancements On Off] (What's this?)

  • [1] W. Al-Salam, Characterization theorems for orthogonal polynomials, Orthogonal Polynomials, Theory and Practice (P. Nevai, ed.), NATO ASI series, C-294, Kluwer, Dordrecht, 1990, pp. 1-24. MR 1100286 (92g:42011)
  • [2] G. Andrews and R. Askey, Classically orthogonal polynomials, in Polynômes Orthogonaux et Applications (C. Brezinski et al, eds.), Lecture Notes in Math., vol. 1171, Springer-Verlag, New York, 1985, pp. 36-62. MR 838970 (88c:33015b)
  • [3] R. Askey and J. A. Wilson, A set of orthogonal polynomials that generalize the Racah coefficients or $ 6 - j$ symbols, SIAM J. Math. Anal. 10 (1979), 1008-1016. MR 541097 (80k:33012)
  • [4] -, A set of orthogonal polynomials that generalize Jacobi polynomials, Mem. Amer. Math. Soc., no. 319, Amer. Math. Soc., Providence, RI, 1985.
  • [5] R. Askey and J. Wimp, Associated Laguerre and Hermite polynomials, Proc. Roy. Soc. Edinburgh Sect. A 96 (1984), 15-37. MR 741641 (85f:33014)
  • [6] L.-C. Chen and M. E. H. Ismail, On asymptotics of Jacobi and Laguerre polynomials, SIAM J. Math. Anal. 22 (1991), 1442-1449. MR 1112518 (92g:33011)
  • [7] T. S. Chihara, Chain sequences and orthogonal polynomials, Trans. Amer. Math. Soc. 104 (1962), 1-16. MR 0138933 (25:2373)
  • [8] -, An introduction to orthogonal polynomials, Gordon and Breach, New York, 1978. MR 0481884 (58:1979)
  • [9] A. Erdélyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi, Higher transcendental functions, vol. 2, McGraw-Hill, New York, 1953.
  • [10] W. Gawronski, Strong asymptotics and the asymptotic zero distributions of Laguerre polynomials $ L_n^{(an + \alpha )}$ and Hermite polynomials $ H_n^{(an + \alpha )}$, J. Approx. Theory (to appear).
  • [11] W. W. Gawronski and B. Shawyer, Strong asymptotic and the limit distribution of the zeros of Jacobi polynomials $ P_n^{(an + \alpha ,bn + \beta )}$, J. Approx. Theory (to appear).
  • [12] W. Hahn, Über Orthogonalpolynome mit drei Parametern, Deutche. Math. 5 (1940-41), 273-278. MR 0013467 (7:157f)
  • [13] M. E. H. Ismail, J. Letessier, and G. Valent, Linear birth and death models and associated Laguerre polynomials, J. Approx. Theory 56 (1988), 337-348. MR 968940 (89m:60204)
  • [14] M. E. H. Ismail and M. E. Muldoon, A discrete approach to monotinicty of zeros of orthogonal polynomials, Trans. Amer. Math. Soc. 323 (1991), 65-78. MR 1014251 (91c:33017)
  • [15] D. Moak, E. Saff and R. Varga, On the zeros of Jacobi polynomials $ P_n^{({\alpha _n},{\beta _n})}$, Trans. Amer. Math. Soc. 249 (1979), 159-162. MR 526315 (80g:33021)
  • [16] G. Szegö, Orthogonal polynomials, Colloq. Publ., fourth ed., vol. 23, Amer. Math. Soc., Providence, R.I., 1975.
  • [17] E. Van Doorn, Representation and bounds for zeros of orthogonal polynomials and eigenvalues of sign-symmetric tri-diagonal matrices, J. Approx. Theory 51, (1987), 254-266. MR 913621 (88j:33010)
  • [18] H. S. Wall and M. Wetzel, Quadratic forms and convergence regions for continued fractions, Duke Math. J. 11 (1944), 89-102. MR 0011340 (6:151b)
  • [19] J. Wilson, Some hypergeometric orthogonal polynomials, SIAM J. Math. Anal. 11 (1980), 690-701. MR 579561 (82a:33014)
  • [20] J. Wimp, Explicit formulas for the associated Jacobi polynomials and some applications, Canad. J. Math. 39 (1987), 983-1000. MR 915027 (88k:33023)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 33C45, 26C10, 33C15

Retrieve articles in all journals with MSC: 33C45, 26C10, 33C15

Additional Information

Keywords: Bounds, chain sequences, Chihara-Wall-Wetzel theorem, Laguerre polynomials, largest zero, Meixner polynomials, Meixner-Pollaczek polynomials, recurrence relations, smallest zero
Article copyright: © Copyright 1992 American Mathematical Society

American Mathematical Society