Subharmonic solutions of conservative systems with nonconvex potentials

Authors:
A. Fonda and A. C. Lazer

Journal:
Proc. Amer. Math. Soc. **115** (1992), 183-190

MSC:
Primary 34C25; Secondary 34B15, 47H15, 58F22, 70K40

DOI:
https://doi.org/10.1090/S0002-9939-1992-1087462-X

MathSciNet review:
1087462

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We consider the system of second order differential equations

**[1]**V. Benci and D. Fortunato,*A Birkhoff-Lewis type result for a class of Hamiltonian systems*Manuscripta Math.**59**(1987), 441-456. MR**915996 (88m:58047)****[2]**G. D. Birkhoff and D. C. Lewis,*On the periodic motions near a given periodic motion of a dynamical system*, Ann. Mat. Pura Appl.**12**(1933), 117-133. MR**1553217****[3]**F. Clarke and I. Ekeland,*Nonlinear oscillations and boundary value problems for Hamiltonian systems*, Arch. Rational Mech. Anal.**78**(1982), 315-333. MR**653545 (83h:58038)****[4]**C. Conley and E. Zehnder,*Subharmonic solutions and Morse theory*, Physica A**124**(1984), 649-658. MR**759212 (86b:58020)****[5]**T. Ding and F. Zanolin,*Periodic solutions of Duffing's equations with superquadratic potential*, preprint.**[6]**I. Ekeland and H. Hofer,*Subharmonics for convex nonautonomous Hamiltonian systems*, Comm. Pure Appl. Math.**40**(1987), 1-36. MR**865356 (88b:58049)****[7]**A. Fonda, M. Ramos, and M. Willem,*Subharmonic solutions for second order differential equations*, preprint. MR**1215258 (94c:58027)****[8]**A. Fonda and M. Willem,*Subharmonic oscillations of forced pendulum-type equations*, J. Differential Equations**81**(1989), 215-220. MR**1016079 (90i:70031)****[9]**H. Jacobowitz,*Periodic solutions of**via the Poincaré-Birkhoff Theorem*, J. Differential Equations**29**(1976), 37-52. MR**0393673 (52:14482)****[10]**J. Mawhin and M. Willem,*Critical point theory and hamiltonian systems*, Springer-Verlag, New York, 1988. MR**982267 (90e:58016)****[11]**R. Michalek and G. Tarantello,*Subharmonic solutions with prescribed minimal period for nonautonomous Hamiltonian systems*, J. Differential Equations**72**(1988), 28-55. MR**929197 (89c:58040)****[12]**P. H. Rabinowitz,*On subharmonic solutions of Hamiltonian systems*, Comm. Pure Appl. Math.**33**(1980), 609-633. MR**586414 (81k:34032)****[13]**-,*Minimax methods in critical point theory with applications to differential equations*, CBMS Reg. Conf. Ser. in Math. no. 65, Amer. Math. Soc., Providence, RI, 1986. MR**845785 (87j:58024)****[14]**G. Tarantello,*Subharmonic solutions for Hamiltonian systems via**-pseudo index theory*, preprint.**[15]**M. Willem,*Subharmonic oscillations of convex Hamiltonian systems*, Nonlin. Anal.**9**(1985), 1303-1311. MR**813660 (87e:58083)****[16]**Z. Yang,*The existence of subharmonic solutions for sublinear Duffing's equation*, preprint.

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
34C25,
34B15,
47H15,
58F22,
70K40

Retrieve articles in all journals with MSC: 34C25, 34B15, 47H15, 58F22, 70K40

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1992-1087462-X

Keywords:
Critical point,
Saddle Point Theorem,
Palais-Smale condition

Article copyright:
© Copyright 1992
American Mathematical Society