Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS
   
Mobile Device Pairing
Green Open Access
Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society
ISSN 1088-6826(online) ISSN 0002-9939(print)

The distribution of smooth numbers in arithmetic progressions


Authors: Antal Balog and Carl Pomerance
Journal: Proc. Amer. Math. Soc. 115 (1992), 33-43
MSC: Primary 11N25; Secondary 11L05, 11N36
MathSciNet review: 1089401
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We estimate the number of integers $ n$ up to $ x$ in the arithmetic progression $ a(\bmod q)$ with $ n$ free of prime factors exceeding $ y$. For a wide range of the variables $ x,y,q$, and $ a$ we show that this number is about $ x/(q{u^u})$, where $ u = \log x/\log y$.


References [Enhancements On Off] (What's this?)


Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 11N25, 11L05, 11N36

Retrieve articles in all journals with MSC: 11N25, 11L05, 11N36


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9939-1992-1089401-4
PII: S 0002-9939(1992)1089401-4
Article copyright: © Copyright 1992 American Mathematical Society