Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

$ \kappa$-topologies for right topological semigroups


Authors: John Baker, Neil Hindman and John Pym
Journal: Proc. Amer. Math. Soc. 115 (1992), 251-256
MSC: Primary 22A15
DOI: https://doi.org/10.1090/S0002-9939-1992-1093590-5
MathSciNet review: 1093590
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Given a cardinal $ \kappa $ and a right topological semigroup $ S$ with topology $ \tau $, we consider the new topology obtained by declaring any intersection of at most $ \kappa $ members of $ \tau $ to be open. Under appropriate hypotheses, we show that this process turns $ S$ into a topological semigroup. We also show that under these hypotheses the points of any subsemigroup $ T$ with card $ T \leq \kappa $ can be replaced by (new) open sets that algebraically behave like $ T$. Examples are given to demonstrate the nontriviality of these results.


References [Enhancements On Off] (What's this?)

  • [1] J. W. Baker and P. Milnes, The ideal structure of the Stone-Čech compactification of a group, Math. Proc. Cambridge Philos. Soc. 82 (1977), 401-409. MR 0460516 (57:509)
  • [2] J. Berglund, H. D. Junghenn, and P. Milnes, Analysis on semigroups, Wiley, New York, 1989. MR 999922 (91b:43001)
  • [3] W. Comfort and S. Negrepontis, The theory of ultrafilters, Springer-Verlag, Berlin, 1974. MR 0396267 (53:135)
  • [4] E. van Douwen, The Čech-Stone compactification of a discrete groupoid, Topology Appl. 39 (1991), 43-60. MR 1103990 (92g:54026)
  • [5] N. Hindman, The ideal structure of the space of $ \kappa $-uniform ultrafilters on a discrete semigroup, Rocky Mountain J. Math. 16 (1986), 685-701. MR 871030 (88d:54031)
  • [6] -, Ultrafilters and Ramsey theory--an update, Set Theory and its Applications, (V. Steprans and S. Watson, eds.) Lecture Notes in Math., vol 1401, Springer-Verlag, New York, 1989, pp. 97-118.
  • [7] -, The semigroups $ \beta \mathbb{N}$ and its applications to number theory, The Analytical and Topological Theory of Semigroups, (K. H. Hofmann et al, eds.), de Gruyter, Berlin, 1990, pp. 347-360.
  • [8] J. S. Pym, Footnote to a paper of Baker and Milnes, Math. Proc. Cambridge Philos. Soc. 85 (1979), 315. MR 516090 (80d:22002)
  • [9] R. C. Walker, The Stone-Čech compactification, Springer-Verlag, Berlin, 1974. MR 0380698 (52:1595)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 22A15

Retrieve articles in all journals with MSC: 22A15


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1992-1093590-5
Article copyright: © Copyright 1992 American Mathematical Society

American Mathematical Society