Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Complete conformal metrics with zero scalar curvature

Authors: Xiaoyun Ma and Robert C. McOwen
Journal: Proc. Amer. Math. Soc. 115 (1992), 69-77
MSC: Primary 53C21; Secondary 35B40, 58G30
MathSciNet review: 1101988
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we consider the problem of when a noncompact Riemannian manifold $ \widehat{M}$ admits a complete conformal metric with zero scalar curvature. In particular, we show that this can be achieved if $ \widehat{M}$ is the noncompact manifold obtained by deleting a smooth submanifold $ {\Gamma ^n}$ from a compact Riemannian manifold $ {M^N}$ provided $ n \leq (N - 2)/2$ and the Sobolev quotient is positive.

References [Enhancements On Off] (What's this?)

  • [AM] P. Aviles and R. C. McOwen, Complete conformal metrics with negative scalar curvature in compact Riemannian manifolds, Duke Math. J. 56 (1988), 395-398. MR 932852 (89b:58224)
  • [C] M. Cantor, Elliptic operators and the decomposition of tensor fields, Bull. Amer. Math. Soc. 5 (1981), 235-262. MR 628659 (83b:58069)
  • [GT] D. Gilbarg and N. Trudinger, Elliptic partial differential equations of second order, 2nd edition, Springer-Verlag, Berlin, Heidelberg, New York, and Tokyo, 1983. MR 737190 (86c:35035)
  • [J] Zhiren Jin, A counterexample to the Yamabe problem for complete noncompact manifolds, Lecture Notes in Math., vol. 1306, Springer-Verlag, Berlin, Heidelberg, New York, London, Paris, and Tokyo, 1988, pp. 93-101. MR 1032773 (91a:53065)
  • [LN] C. Loewner and L. Nirenberg, Partial differential equations invariant under conformal or projective transformations, Contributions to Analysis, Academic Press, New York, 1974, pp. 245-272. MR 0358078 (50:10543)
  • [LP] J. M. Lee and T. H. Parker, The Yamabe problem, Bull. Amer. Math. Soc. 17 (1987), 37-91. MR 888880 (88f:53001)
  • [MM] X. Ma and R. C. McOwen, The Laplacian on complete manifolds with warped cylindrical ends, Commun, in Partial Differential Equations, 16(10), 1583-1614 (1991). MR 1133742 (93b:58135)
  • [PW] M. Protter and H. Weinberger, Maximum principles in differential equations, Prentice-Hall, Englewood Cliffs, NJ, 1967. MR 0219861 (36:2935)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 53C21, 35B40, 58G30

Retrieve articles in all journals with MSC: 53C21, 35B40, 58G30

Additional Information

Keywords: Conformal metrics, conformal Laplacian, scalar curvature, Riemannian manifolds
Article copyright: © Copyright 1992 American Mathematical Society

American Mathematical Society