Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

Dirichlet polyhedra for cyclic groups in complex hyperbolic space


Author: Mark B. Phillips
Journal: Proc. Amer. Math. Soc. 115 (1992), 221-228
MSC: Primary 32H20; Secondary 51M10, 51M20
MathSciNet review: 1107276
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We prove that the Dirichlet fundamental polyhedron for a cyclic group generated by a unipotent or hyperbolic element $ \gamma $ acting on complex hyperbolic $ n$-space centered at an arbitrary point $ w$ is bounded by the two hypersurfaces equidistant from the pairs $ w,\gamma w$ and $ w,{\gamma ^{ - 1}}w$ respectively. The proof relies on a convexity property of the distance to an isometric flow containing $ \gamma $.


References [Enhancements On Off] (What's this?)

  • [1] Alan F. Beardon, The geometry of discrete groups, Graduate Texts in Mathematics, vol. 91, Springer-Verlag, New York, 1983. MR 698777
  • [2] B. H. Bowditch, Geometrical finiteness for hyperbolic groups, J. Funct. Anal. 113 (1993), no. 2, 245–317. MR 1218098, 10.1006/jfan.1993.1052
  • [3] S. S. Chen and L. Greenberg, Hyperbolic spaces, Contributions to analysis (a collection of papers dedicated to Lipman Bers), Academic Press, New York, 1974, pp. 49–87. MR 0377765
  • [4] Paul E. Ehrlich and Hans-Christoph Im Hof, Dirichlet regions in manifolds without conjugate points, Comment. Math. Helv. 54 (1979), no. 4, 642–658. MR 552682, 10.1007/BF02566298
  • [5] D. B. A. Epstein, Complex hyperbolic geometry, Analytical and geometric aspects of hyperbolic space (Coventry/Durham, 1984), London Math. Soc. Lecture Note Ser., vol. 111, Cambridge Univ. Press, Cambridge, 1987, pp. 93–111. MR 903851
  • [6] W. M. Goldman, Introduction to complex hyperbolic geometry, lecture notes for course at the Univ. of Maryland, January 1990.
  • [7] Troels Jørgensen, On cyclic groups of Möbius transformations, Math. Scand. 33 (1973), 250–260 (1974). MR 0348103
  • [8] J. J. Stoker, Differential geometry, Pure and Applied Mathematics, Vol. XX, Interscience Publishers John Wiley & Sons, New York-London-Sydney, 1969. MR 0240727
  • [9] G. D. Mostow, On a remarkable class of polyhedra in complex hyperbolic space, Pacific J. Math. 86 (1980), no. 1, 171–276. MR 586876
  • [10] M. B. Phillips, Dirichlet polyhedra in complex hyperbolic space, Doctoral Dissertation, Univ. of Maryland at College Park, 1990.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 32H20, 51M10, 51M20

Retrieve articles in all journals with MSC: 32H20, 51M10, 51M20


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1992-1107276-1
Keywords: Discrete groups, fundamental domain, complex hyperbolic space
Article copyright: © Copyright 1992 American Mathematical Society