CHARACTERIZATION OF SEPARABLE METRIC R-TREES

J. C. MAYER, L. K. MOHLER, L. G. OVERSTEEGEN, AND E. D. TYMCHATYN

Abstract. An R-tree (X, d) is a uniquely arcwise connected metric space in which each arc is isometric to a subarc of the reals. R-trees arise naturally in the study of groups of isometries of hyperbolic space. Two of the authors had previously characterized R-trees topologically among metric spaces. The purpose of this paper is to provide a simpler proof of this characterization for separable metric spaces. The main theorem is the following: Let (X, r) be a separable metric space. Then the following are equivalent:

1. X admits an equivalent metric d such that (X, d) is an R-tree.
2. X is locally arcwise connected and uniquely arcwise connected.

The method of proving that (2) implies (1) is to "improve" the metric r through a sequence of equivalent metrics of which the first is monotone on arcs, the second is strictly monotone on arcs, and the last is convex, as desired.

1. Introduction

1.1. R-trees. An R-tree (X, d) is a uniquely arcwise connected metric space (see definition below) in which each arc is isometric to a subarc of the reals. ("Uniquely" is superfluous in this definition.) Actions on R-trees can be seen as ideal points in the compactification of groups of isometries of hyperbolic space [Mr, Be, MrS]. The R-trees considered in these applications are always separable. In this paper we provide a much simpler proof of the characterization of R-trees among separable metric spaces than the proof provided for metric spaces in general in [MO].

1.2. Main Theorem (Characterization Theorem). (See Theorem 5.1 of [MO].) Let (X, r) be a separable metric space. Then the following are equivalent:

1. X admits an equivalent metric d such that (X, d) is an R-tree.
2. X is locally arcwise connected and uniquely arcwise connected.

If r is a metric on a space X, by Br(x, ε) we denote the open ball about x ∈ X of radius ε > 0 in the metric r. That (1) implies (2) follows from the...
observation that in an R-tree (X, d), if $d(x, z) = \delta$, then there is an arc from x to z, at each point $y \neq z$ of which $d(x, y) < \delta$. (See the definition of a convex metric and Proposition 1.4 below.) Hence, for all $\varepsilon > 0$, $B_d(x, \varepsilon)$ is arcwise connected.

The proof that (2) implies (1) proceeds through a series of lemmas, which we present in §2. These lemmas gradually “improve” the metric r on X through a sequence of equivalent metrics ρ, ρ^*, and d, such that ρ is monotone on arcs, ρ^* is strictly monotone on arcs, and, finally, d is convex, so that (X, d) is an R-tree.

1.3. Definitions. An arc A in a space X is the image $A = \varepsilon([0, 1])$ of an embedding $\varepsilon: [0, 1] \rightarrow X$; the end points of A are $\varepsilon(0)$ and $\varepsilon(1)$. We say a space X is (uniquely) arcwise connected iff given $x \neq y \in X$, there is a (unique) arc $A \subset X$ whose end points are x and y. In a uniquely arcwise connected space, the intersection of any two arcwise connected subsets is again arcwise connected.

Let X be a uniquely arcwise connected space with $x \neq y \in X$. By $[x, y]$ we denote the unique arc in X whose end points are x and y; $[x, x]$ denotes $\{x\}$. Let $p \in X$ be fixed. Since X is uniquely arcwise connected, we have for all $x, y \in X$, $[p, x] \cap [p, y] = [p, z]$ for some $z \in X$ (possibly, $[p, z]$ is degenerate). Define a meet function $\wedge_p: X \times X \rightarrow X$ with respect to p by setting $x \wedge_p y = z$, where z is defined as above. We will drop the p subscript where this can be done without confusion.

We say a space X is locally arcwise connected iff for every point $x \in X$ and every open neighborhood U of x, there is an arcwise connected open neighborhood V of x with $V \subset U$.

Let (X, r) be a uniquely arcwise connected metric space. We say that r is monotone on arcs (respectively, strictly monotone on arcs) iff for all $x \neq z \in X$, for every $y \in [x, z)$, $r(x, y) \leq r(x, z)$ (respectively, $r(x, y) < r(x, z)$). We call the metric r on X a convex metric iff for all $x, z \in X$, for all $y \in [x, z]$, $r(x, z) = r(x, y) + r(y, z)$. A convex metric on X is strictly monotone on arcs, though not necessarily conversely. The following equivalence is easy to prove:

1.4. Proposition. Let (X, d) be a uniquely arcwise connected metric space. Then the following are equivalent:

- (X, d) is an R-tree.
- d is a convex metric on X.

2. Improving the metric

In this section we assume that (X, r) is a uniquely arcwise connected, locally arcwise connected, separable metric space. We may assume without loss of generality that r is bounded. In the following lemmas we show how to improve the metric r on X, through a series of equivalent metrics, to a metric d on X with respect to which X is an R-tree.

2.1. Lemma. The metric ρ on X, defined by $\rho(x, y) = \text{diam}_r([x, y])$, is bounded, equivalent to r, and monotone on arcs.

Proof. If $y \in [x, z]$, then $[x, y] \subset [x, z]$, which implies $\text{diam}_r([x, y]) \leq \text{diam}_r([x, z])$; so ρ is monotone on arcs and bounded by the bound of r.
That p is a metric is easy to verify. We verify the triangle inequality: since X is uniquely arcwise connected and $[x, y] \cap [y, z] \neq \emptyset$, we have $[x, z] \subset [x, y] \cup [y, z]$. Thus,
\[
\text{diam}_r([x, z]) \leq \text{diam}_r([x, y] \cup [y, z]) \leq \text{diam}_r([x, y]) + \text{diam}_r([y, z]).
\]
Hence, $p(x, z) \leq p(x, y) + p(y, z)$.

Since $p(x, y) = \text{diam}_r([x, y]) \geq r(x, y)$, we have $B_p(x, \varepsilon) \subset B_r(x, \varepsilon)$; so the topology on X generated by p is finer than the topology on X generated by r. Conversely, to see that r is finer than p, let $\varepsilon > 0$ and $x \in X$ be given. Since X is locally arcwise connected, there is an arcwise connected r-open neighborhood U of x such that $U \subset B_r(x, \varepsilon/2)$. Then for all $y \in U$, $r(x, y) = \text{diam}_r([x, y]) < \varepsilon$. Therefore, $U \subset B_p(x, \varepsilon)$.

2.2. **Lemma.** Let D be a countable dense subset of X, and let $\{J_i\}_{i=1}^{\infty}$ be the collection of all arcs between different points of D. For each i, let d_i be a convex metric on J_i such that $\text{diam}_{d_i}(J_i) = 2^{-i}$. Then the metric p^* on X, defined by
\[
p^*(x, y) = p(x, y) + \sum_{i=1}^{\infty} \text{diam}_{d_i}(J_i \cap [x, y]),
\]
is bounded, equivalent to p, and strictly monotone on arcs.

Proof. From the fact that X is uniquely arcwise connected, it is easy to show that the following hold for all $x, y, z \in X$, for all i:

1. $J_i \cap [x, y]$ is either empty, a point, or an arc,
2. $[x, z] \subset [x, y] \cup [y, z]$, and
3. $J_i \cap ([x, y] \cup [y, z])$ is either empty, a point, or an arc.

Consequently, we have
\[
J_i \cap [x, z] \subset J_i \cap ([x, y] \cup [y, z]) = (J_i \cap [x, y]) \cup (J_i \cap [y, z])
\]
and thus,
\[
\text{diam}_{d_i}(J_i \cap [x, z]) \leq \text{diam}_{d_i}(J_i \cap [x, y]) + \text{diam}_{d_i}(J_i \cap [y, z]).
\]
The triangle inequality now follows from the definition of p^* by considering each term in the sum. The remaining properties of a metric are easy to check. The bound on p^* is the bound on p plus 1.

Since the set of end points of the J_i's is dense in X and X is locally arcwise connected and uniquely arcwise connected, it follows that if U and V are disjoint closed neighborhoods of x and y, respectively, then there is some index i such that for $J_i = [a, b]$, we have $a, x \wedge y a \in U$ and $b, y \wedge x b \in V$; so $J_i \cap [x, y] \supset [x, y] - (U \cup V)$. In particular, $J_i \cap [x, y]$ is nondegenerate. (It may be helpful to draw a figure.) It now follows from the definition of p^* that for all $x \neq y \in X$, $p^*(x, y) > p(x, y)$. Therefore, p^* is finer than p.

Now suppose $y \in [x, z]$. It follows that for all i,
\[
diam_{d_i}(J_i \cap [x, y]) \leq \text{diam}_{d_i}(J_i \cap [x, z]).
\]
But by the argument in the preceding paragraph (choose U about x and V about z to both miss y), there is an index i such that strict inequality obtains in $(*)$, since d_i is convex, hence strictly monotone, on J_i. It follows that $p^*(x, y) < p^*(x, z)$; so, p^* is strictly monotone on arcs.
To see that \(\rho \) is finer than \(\rho^* \), let \(\varepsilon > 0 \) and \(x \in X \) be given. Choose \(N \) such that \(\sum_{i=N+1}^{\infty} 2^{-i} < \varepsilon/2 \). For \(i = 1, 2, \ldots, N \), partition each \(J_i \) into subarcs of \(d_i \)-diameter at most \(\varepsilon/8N \). Since \(X \) is locally arcwise connected, we may choose an arcwise connected \(\rho \)-open neighborhood \(U \) of \(x \) such that \(U \subset B_\rho(x, \varepsilon/4) \) and each arc in \(U \) meets \(J_i \), for \(i = 1, 2, \ldots, N \), in at most two partition elements. Thus, if \(y \in U \), then \(\text{diam}_{d_i}(J_i \cap [x, y]) \leq \varepsilon/4N \). We then have

\[
\rho^*(x, y) = \rho(x, y) + \sum_{i=1}^{N} \text{diam}_{d_i}(J_i \cap [x, y]) + \sum_{i=N+1}^{\infty} \text{diam}_{d_i}(J_i \cap [x, y])
\]

\[
< \frac{\varepsilon}{4} + \frac{\varepsilon}{4} + \frac{\varepsilon}{2} = \varepsilon
\]

Therefore, \(U \subset B_{\rho^*}(x, \varepsilon) \). \(\square \)

In the following lemma, note that we are not claiming that the metric \(d_\rho \) is equivalent to \(\rho^* \) on \(X \).

2.3. Lemma. Let \(\rho^* \) be a bounded metric on \(X \) strictly monotone on arcs, and let \(p \in X \). For all \(x, y \in X \), define

\[
d_\rho(x, y) = \rho^*(p, x) + \rho^*(p, y) - 2\rho^*(p, x \wedge y).
\]

Then \(d_\rho \) is a convex metric on \(X \) bounded by twice the bound on \(\rho^* \).

Proof. Throughout the proof, \(\wedge \) will denote \(\wedge_p \). Since \(x \wedge y = y \wedge x \), \(d_\rho \) is symmetric. Since \(x \wedge y \in [p, x] \) and \(x \wedge y \in [p, y] \) and \(\rho^* \) is monotone on arcs, we have \(\rho^*(p, x) - \rho^*(p, x \wedge y) > 0 \) and \(\rho^*(p, y) - \rho^*(p, x \wedge y) > 0 \). Consequently, \(d_\rho(x, y) \geq 0 \). If \(x = y \) then \(x = x \wedge y = y \); so \(d_\rho(x, y) = 0 \). Conversely, if \(d_\rho(x, y) = 0 \), then \(\rho^*(p, x) - \rho^*(p, x \wedge y) = 0 \) and \(\rho^*(p, y) - \rho^*(p, x \wedge y) = 0 \) since their sum is 0 and both are nonnegative. Thus,

\[
\rho^*(p, x) = \rho^*(p, x \wedge y) \quad \text{and} \quad \rho^*(p, y) = \rho^*(p, x \wedge y).
\]

Since \(\rho^* \) is strictly monotone on arcs, this implies \(x = x \wedge y = y \). That \(d_\rho \) is bounded by twice the bound on \(\rho^* \) is clear.

To establish the triangle inequality, suppose \(x, y, z \in X \). Let \(v = x \wedge z \) and let \(b \) be the last point of the arc \([p, y] \) that lies in \([p, x] \cup [p, z] \). There are three cases: \(b \in [p, v] \), \(b \in (v, z] \), and \(b \in (v, x) \). (The reader may find it helpful to draw some figures.) We do the first case below and leave the similar proofs of the remaining cases to the reader.

If \(b \in [p, v] \), then \(x \wedge y = b = y \wedge z \), \(\rho^*(p, y) \geq \rho^*(p, b) \), and \(\rho^*(p, v) \geq \rho^*(p, b) \). Thus we have

\[
d_\rho(x, y) + d_\rho(y, z) = \rho^*(p, x) + 2 \rho^*(p, y) + \rho^*(p, z) - 4 \rho^*(p, b)
\]

\[
\geq \rho^*(p, x) + \rho^*(p, z) - 2 \rho^*(p, b)
\]

\[
\geq \rho^*(p, x) + \rho^*(p, z) - 2 \rho^*(p, v) = d_\rho(x, z).
\]

To verify that \(d_\rho \) is convex, let \(A \) be an arc in \(X \) and let \(x, y, z \in A \) such that \(y \in [x, z] \). Without loss of generality, assume that \(x \wedge z = v \in [y, z] \). Then \(x \wedge y = y \) and \(y \wedge z = v \). Thus we have

\[
d_\rho(x, y) = \rho^*(p, x) + \rho^*(p, y) - 2 \rho^*(p, y) = \rho^*(p, x) - \rho^*(p, y),
\]

\[
d_\rho(y, z) = \rho^*(p, y) + \rho^*(p, z) - 2 \rho^*(p, v),
\]

\[
d_\rho(x, y) + d_\rho(y, z) = \rho^*(p, x) + \rho^*(p, z) - 2 \rho^*(p, v) = d_\rho(x, z). \quad \square
\]
2.4. Example. The following example shows that it is not generally the case that if \(p^* \) is a metric strictly monotone on arcs and \(p \) is an arbitrary point in \(X \), then \(d_p \), defined as in Lemma 2.3, is equivalent to \(p^* \). However, it does follow by the argument in paragraph three of §2.5 that \(p^* \) is finer than \(d_p \).

Let \(p \) be the origin \((0, 0)\), \(x \) the point \((0, 2)\), and \([p, x]\) the line segment joining them in the plane. Let \(a_i = (0, 2 - \frac{1}{i}) \), \(x_i = (1, 2 - \frac{1}{i}) \), and let \([a_i, x_i]\) be the line segment joining them. Our space is

\[
X = [p, x] \cup \left(\bigcup_{i=1}^{\infty} [a_i, x_i] \right).
\]

The idea is to define a metric \(p^* \) on \(X \), strictly monotone on arcs, that has the property that from the point of view of \(p \) the arcs \([a_i, x_i]\) look short, but from the point of view of \(x \) they look long.

Let \(d \) denote the standard (Euclidean) metric on the plane, with \(\pi_1 \) and \(\pi_2 \) denoting the projections to the horizontal and vertical axes, respectively. Let \(d_1 \) denote the “arc-length” metric on \(X \); that is, the \(d_1 \)-distance between two points \(a, b \in X \) is the Euclidean arc-length of the unique arc \([a, b]\) between them. Let \(d_2 \) be defined as follows:

\[
d_2(b, a) = d_2(a, b) = \begin{cases}
 d(a, b), & \text{if } a, b \in [p, x], \\
 d(a, a_i) + \frac{d(a_i, b)}{i} & \text{if } a \in [p, x], \; \pi_2(b) = \pi_2(a_i) \\
 \end{cases}
\]

Note that \(d_2 \) is only defined on a subset of \(X \times X \).

The metric \(p^* \) on \(X \) is defined as follows:

\[
p^*(b, a) = p^*(a, b) = \begin{cases}
 d_1(a, b), & \text{if } a, b \in [p, a_1] \text{ or } a, b \in X - [p, a_1], \\
 d_1(a, b) + (1-t)d_2(a, b), & \text{if } a \in [p, a_1], \; b \in X - [p, a_1], \; t = \pi_2(a). \\
 \end{cases}
\]

We show below that \(p^* \) is a metric on \(X \), strictly monotone on arcs, and that the convex metric \(d_p \) on \(X \) defined with respect to \(p^* \) and \(p \) as in Lemma 2.3 has the property that \(d_p(x, x_i) \to 0 \). Since \(p^*(x, x_i) = d_1(x, x_i) > 1 \), for all \(i \), this shows \(d_p \) is not equivalent to \(p^* \).

It is easy to see that as a function from \(X \times X \) to \(\mathbb{R} \), \(p^* \) is nonnegative, symmetric, and takes value 0 if and only if \(a = b \). Moreover, on \([p, x]\) and on \(X - [p, a_1] \), \(p^* \) reduces to the arc-length metric \(d_1 \).

To see that \(p^* \) is strictly monotone on arcs, suppose \(a, b \in X \). If \(a, b \) are both in \([p, x]\) or \(X - [p, a_1] \), then \(p^* = d_1 \); hence, \(p^* \) is strictly monotone on \([a, b]\). So we may suppose \(a \in [p, a_1] \) and \(b \in (a_i, x_i) \), for some \(i \). Then (by abuse of notation) we see that \(2 > \pi_2(b) = \pi_2(a_i) = a_i \geq 1 \), \(0 \leq \pi_2(a) = a < 1 \), and \(0 < \pi_1(b) = b \leq 1 \). One may then compute that

\[
p^*(a, b) = ad_1(a, b) + (1-a)d_2(a, b) \\
= a[d(a, a_i) + d(a_i, b)] + (1-a) \left[d(a, a_i) + \frac{d(a_i, b)}{i} \right] \\
= a_i - a + b \left(a + \frac{1-a}{i} \right) \quad \text{written as a function of } b \\
= a_i + \frac{b}{i} + a \left(-1 + b - \frac{b}{i} \right) \quad \text{written as a function of } a.
\]
It is then easy to see that for fixed \(a \), as \(b \) increases (i.e., \([a, b]\) gets longer in the \(b \)-direction), \(\rho^*(a, b) \) increases, while for fixed \(b \), as \(a \) decreases (i.e., \([a, b]\) gets longer in the \(a \)-direction), \(\rho^*(a, b) \) increases. Therefore, \(\rho^* \) is strictly monotone on arcs.

Note that for \(a = 1, \ b = 0 \), or \(i = 1 \), \(\rho^*(a, b) \) reduces to the arc-length of \([a, b]\): \(d_1(a, b) = a_i - a + b \). The above arguments show that for all \(a, b \in X \), \(\rho^*(a, b) \leq d_1(a, b) \), with equality holding if either \(a, b \in [p, x] \cup [a_1, x_1] \) or \(a, b \in X - [p, a_1] \).

It remains to show that \(\rho^* \) satisfies the triangle inequality. So suppose \(a, b \in X \). Since \(\rho^* \) is strictly monotone on arcs, it suffices to check the triangle inequality for \(c \in [a, b] \). If \([a, b] \subset [p, x] \) or \([a, b] \subset X - [p, a_1] \), then \(\rho^* = d_1 \); so we may suppose \(a \in [p, a_1] \) and \(b \in (a_1, x_1] \), for some \(i \). Let \(c \in [a, b] \). As above, assume \(\pi_2(a_i) = a_i, \ \pi_1(b) = b, \) and \(\pi_2(a) = a \). There are three cases to consider.

If \(c \in [a_1, a_i] \), then we have
\[
\rho^*(a, b) \leq d_1(a, b) \leq d_1(a, c) + d_1(c, b) = \rho^*(a, c) + \rho^*(c, b).
\]
Suppose \(c \in [a, a_1] \); then \(0 \leq a \leq \pi_2(c) = c \leq 1 \). Observe that
\[
\rho^*(a, b) = a_i - a + \frac{b}{i} + a \left(b - \frac{b}{i} \right),
\quad \rho^*(a, c) + \rho^*(c, b) = a_i - a + \frac{b}{i} + c \left(b - \frac{b}{i} \right).
\]
Since \(c \geq a \), the triangle inequality holds.

Finally, suppose \(c \in [a_i, b] \); then \(0 \leq \pi_1(c) = c \leq b \leq 1 \). Observe that
\[
\rho^*(a, b) = a_i - a + b \left(a + \frac{1 - a}{i} \right),
\quad \rho^*(a, c) + \rho^*(c, b) = a_i - a + b + c \left(-1 + a + \frac{1 - a}{i} \right).
\]
The equation for \(\rho^*(a, c) + \rho^*(c, b) \) is linear in \(c \); when \(c = 0 \), it reduces to
\[
\rho^*(a, c) + \rho^*(c, b) = a_i - a + b = d_1(a, b) \geq \rho^*(a, b);
\]
when \(c = b \), it reduces to
\[
\rho^*(a, c) + \rho^*(c, b) = \rho^*(a, b).
\]
So for \(0 \leq c \leq b \), the triangle inequality holds.

Now \(\rho^* \) is a metric on \(X \), strictly monotone on arcs. We define the convex metric \(d_p \) with respect to \(\rho^* \) and point \(p \in X \) as in Lemma 2.3. Then one may compute
\[
d_p(x_1, x_i) = 2 - d(p, a_i) + \frac{d(a_i, x_i)}{i} = \frac{2}{i}, \quad i \to 0.
\]

2.5. Proof of Theorem 1.2. Let \((X, r)\) be a uniquely arcwise connected, locally arcwise connected, separable metric space. Without loss of generality, suppose that \(r \) is bounded. Let \(\rho^* \) be the bounded metric of Lemma 2.2 equivalent to \(r \) and strictly monotone on arcs. In order to obtain a convex metric on \(X \) equivalent to \(r \), we must again use the separability of \(X \). Let \(\{p_i\}_{i=1}^\infty \) be a
countable dense set in X, and for each i, let $d_i = d_{p_i}$ be the convex metric of Lemma 2.3 defined in terms of ρ^* and p_i. Note that there is a uniform bound on the d_i's.

For all $x, y \in X$, define

$$d(x, y) = \sum_{i=1}^{\infty} \frac{d_i(x, y)}{2^i}.$$

It is easy to see that d is a bounded convex metric on X. So it remains to show that d is equivalent to ρ^*.

To see that ρ^* is finer than d, observe that if $\rho^*(x_j, x) \to 0$, then, since X is locally arcwise connected, $\rho^*(x_j \wedge_{p_i} x, x) \to 0$ for each i. Consequently, by the triangle inequality and the continuity of ρ^*, we have for each i,

$$\rho^*(p_i, x) - \rho^*(p_i, x_j \wedge_{p_i} x) \to 0,$$

$$\rho^*(p_i, x_j) - \rho^*(p_i, x_j \wedge_{p_i} x) \to 0.$$

Since

$$d_i(x_j, x) = \rho^*(p_i, x_j) - \rho^*(p_i, x_j \wedge_{p_i} x) + \rho^*(p_i, x) - \rho^*(p_i, x_j \wedge_{p_i} x),$$

it follows that $d_i(x_j, x) \to 0$ for each i. Since the sum converges, $d(x_j, x) \to 0$.

To prove that d is finer than ρ^*, we show that for each $x \in X$ and each $\epsilon > 0$ there is a $\delta > 0$ such that $d(x, y) < \delta$ implies $\rho^*(x, y) < \epsilon$. Let $\epsilon > 0$ and $x \in X$ be given. Choose n so that $\rho^*(p_n, x) < \epsilon/3$. Choose $\delta = \epsilon/3(2^n)$ so that

$$d(x, y) < \delta \text{ implies } d_n(x, y) < \epsilon/3.$$

Now, by definition of d_n,

$$d_n(x, y) + 2\rho^*(p_n, x \wedge_{p_n} y) = \rho^*(p_n, x) + \rho^*(p_n, y).$$

Since ρ^* is monotone on arcs, we have

$$\rho^*(p_n, x \wedge_{p_n} y) \leq \rho^*(p_n, x) < \epsilon/3.$$

Therefore,

$$\rho^*(x, y) \leq \rho^*(p_n, x) + \rho^*(p_n, y) = d_n(x, y) + 2\rho^*(p_n, x \wedge_{p_n} y) < \epsilon/3 + 2\epsilon/3 = \epsilon.$$

This concludes the proof of the main theorem.

REFERENCES

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF ALABAMA AT BIRMINGHAM, BIRMINGHAM, ALABAMA 35294-2060

E-mail address: mayer@math.uab.edu

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF SASKATCHEWAN, SASKATOON, SASKATCHEWAN S7N 0W0, CANADA