Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

A consistency result on thin-tall superatomic Boolean algebras


Author: Juan Carlos Martínez
Journal: Proc. Amer. Math. Soc. 115 (1992), 473-477
MSC: Primary 03E35; Secondary 06E15
DOI: https://doi.org/10.1090/S0002-9939-1992-1079703-X
MathSciNet review: 1079703
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We prove that if $ [unk]$ is an infinite cardinal with $ {[unk]^{ < [unk]}} = [unk]$, then there is a cardinal-preserving notion of forcing that forces the existence of a $ [unk]$-thin-tall superatomic Boolean algebra. Consistency for specific $ [unk]$, like $ {\omega _1}$, then follows as a corollary.


References [Enhancements On Off] (What's this?)


Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 03E35, 06E15

Retrieve articles in all journals with MSC: 03E35, 06E15


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1992-1079703-X
Article copyright: © Copyright 1992 American Mathematical Society