Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Eigenvalues of some almost periodic functions


Author: Jirō Egawa
Journal: Proc. Amer. Math. Soc. 115 (1992), 535-540
MSC: Primary 54H20
DOI: https://doi.org/10.1090/S0002-9939-1992-1079890-3
MathSciNet review: 1079890
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ {B_U}$ be the set of real valued functions on $ R$ which are bounded and uniformly continuous. For $ f,g \in {B_U}$, put

$\displaystyle d(f,g) = \mathop {\sup }\limits_{t \in R} \vert f(t) - g(t)\vert.$

Then $ {B_U}$ becomes a metric space. On $ {B_U}$ we define a flow $ \eta $ by $ \eta (f,t) = {f_t}$ for $ (f,t) \in {B_U} \times R$. We denote the restriction of $ \eta $ to the hull of $ f \in {B_U}$ by $ {\eta _f}$. If $ f$ is almost periodic, then the set of eigenvalues of $ {\eta _f}$ coincides with the module of $ f$ (see J. Egawa, Eigenvalues of compact minimal flows, Math. Seminar Notes (Kobe Univ.), 10 (1982), 281-291. In this paper, we extend this result to almost periodic functions with some additional properties.

References [Enhancements On Off] (What's this?)

  • [1] J. Egawa, Eigenvalues of compact minimal flows, Math. Seminar Notes (Kobe Univ.) 10 (1982), 281-291. MR 704910 (84f:54054)
  • [2] R. Ellis, Lectures on topological dynamics, Benjamin, New York, 1969. MR 0267561 (42:2463)
  • [3] A. M. Fink, Almost periodic differential equations, Lecture Notes in Math., vol. 377, Springer-Verlag, New York, 1974. MR 0460799 (57:792)
  • [4] V. V. Nemytskii and V. V. Stepanov, Qualitative theory of differential equations, Princeton Univ. Press, Princeton, NJ, 1960. MR 0121520 (22:12258)
  • [5] M. Nibu, Topological groups, Iwanami, Tokyo, 1976. (Japanese)
  • [6] L. S. Pontryagin, Topological groups, (Japanese Transl.) Iwanami, Tokyo, 1957.
  • [7] G. R. Sell, Topological dynamics and ordinary differential equations, Van Nostrand Math. Studies, no. 33, Von Nostrand Reinhold, London, 1971. MR 0442908 (56:1283)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 54H20

Retrieve articles in all journals with MSC: 54H20


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1992-1079890-3
Keywords: Equicontinuous, minimal flow, almost periodic function, eigenvalues
Article copyright: © Copyright 1992 American Mathematical Society

American Mathematical Society