Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Radon-Nikodým property in symmetric spaces of measurable operators


Author: Quan Hua Xu
Journal: Proc. Amer. Math. Soc. 115 (1992), 329-335
MSC: Primary 46L50; Secondary 46E30
DOI: https://doi.org/10.1090/S0002-9939-1992-1081097-0
MathSciNet review: 1081097
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ E$ be a rearrangement invariant function space on $ \left( {0,\infty } \right)$ with the RNP. Let $ \left( {M,\tau } \right)$ be a von Neumann algebra with a faithful normal semifinite trace $ \tau $. It is proved that the associated symmetric space $ {L_E}\left( {M,\tau } \right)$ of measurable operators has the RNP.


References [Enhancements On Off] (What's this?)

  • [1] A. V. Bukhvalov and A. A. Danilevich, Boundary properties of analytic and harmonic functions with values in Banach spaces, Math. Notes 31 (1982), 104-110. MR 649004 (84f:46032)
  • [2] J. Diestel and J. J. Uhl, Vector measures, Amer. Math. Soc., Providence, RI, 1977. MR 0453964 (56:12216)
  • [3] T. Fack and H. Kosaki, Generalized $ s$-numbers of $ \tau $-measurable operators, Pacific J. Math. 123 (1986), 269-300. MR 840845 (87h:46122)
  • [4] I. C. Gohberg and M. G. Krein, Introduction to the theory of linear non self-adjoint operators, Transl. Math. Monographs, vol. 18, Amer. Math. Soc., Providence, RI, 1969. MR 0246142 (39:7447)
  • [5] J. Lindenstrauss and L. Tzafriri, Classical Banach spaces I, Springer-Verlag, Berlin, Heidelberg, and New York, 1977. MR 0500056 (58:17766)
  • [6] -, Classical Banach spaces II, Springer-Verlag, Berlin, Heidelberg, and New York, 1979. MR 540367 (81c:46001)
  • [7] E. Nelson, Notes on non-commutative integration, J. Funct. Anal. 15 (1974), 103-116. MR 0355628 (50:8102)
  • [8] V. I. Ovchinnikov, $ s$-numbers of measurable operators, Funct. Anal. Appl. 4 (1970), 236-242. MR 0271763 (42:6644)
  • [9] M. Takesaki, Theory of operator algebras, Springer-Verlag, Berlin, Heidelberg, and New York, 1979. MR 548728 (81e:46038)
  • [10] Q. Xu, Analytic functions with values in lattices and symmetric spaces of measurable operators, Math. Proc. Camb. Phil. Soc. 109 (1991), 541-563. MR 1094753 (92g:46036)
  • [11] -, Convexité uniforme des espaces symétriques d'opérateurs measurables, C.R. Acad. Sci. Paris Sér. I. Math. 309 (1989), 251-254. MR 1010729 (90i:46115)
  • [12] -, Convexités uniformes et inégalités de martingales, Math. Ann. 287 (1990), 193-211. MR 1054563 (91m:46027)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 46L50, 46E30

Retrieve articles in all journals with MSC: 46L50, 46E30


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1992-1081097-0
Keywords: Radon-Nikodym property, symmetric space, semifinite von Neumann algebra, measurable operator
Article copyright: © Copyright 1992 American Mathematical Society

American Mathematical Society