AN IN Variant ON 3-DIMENSIONAL LIE ALGEBRAS

HIROYUKI TASAKI AND MASAAKI UMEHARA

(Communicated by Palle E. T. Jorgensen)

Abstract. We construct an extra symmetric bilinear form on a 3-dimensional Lie algebra \(g \) which induces an invariant \(\chi(g) \) on \(g \). Moreover it provides a new viewpoint for the classical classification of 3-dimensional Lie algebras.

In this note, we shall construct an extra symmetric bilinear form \(S \) on a 3-dimensional Lie algebra, which provides new viewpoints for the classical classification of 3-dimensional Lie algebras.

Let \(g \) be a 3-dimensional Lie algebra with the Lie bracket \([,]\) over a field \(k \) of characteristic \(\neq 2 \). Let \(\{e_1, e_2, e_3\} \) be a fixed basis. There is a canonical identification \(\wedge^2 g^* \cong g \) by \(e_1 = e_2^* \wedge e_3^* \), \(e_2 = e_3^* \wedge e_1^* \), and \(e_3 = e_1^* \wedge e_2^* \), where \(\{e_1^*, e_2^*, e_3^*\} \) is the dual basis of \(g^* \) with respect to \(\{e_1, e_2, e_3\} \). Then the bracket \([,]\) \(\in (\wedge^2 g^*) \otimes g \) is considered as an element of \(g^* \otimes g \) by the identification and induces a bilinear form \(L : g^* \otimes g \rightarrow k \), which is invariant under the change of a basis up to scalar multiplications in \(k \). If we set the structure constants of the bracket \([,]\) by

\[
[e_2, e_3] = a_{11}e_1 + a_{12}e_2 + a_{13}e_3, \\
[e_3, e_1] = a_{21}e_1 + a_{22}e_2 + a_{23}e_3, \\
[e_1, e_2] = a_{31}e_1 + a_{32}e_2 + a_{33}e_3,
\]

(1)

then the representation matrix of \(L \) with respect to the basis \(\{e_1^*, e_2^*, e_3^*\} \) is written by \(A = (a_{ij})_{i,j=1,2,3} \). If we change the basis on \(g \) by a matrix \(P = (p_{ij})_{i,j=1,2,3} \in \text{GL}(3, k) \) such that \(e_i' = \sum_{j=1}^{3} p_{ij} e_j \), then new structure constants \(A' \) are given by \(A' = (\det P)P^{-1}A^tP^{-1} \).

Now, we define another bilinear form \(S : g \times g \rightarrow k \) by

\[
S(u, v) = L(u_1^*, v_1^*)L(u_2^*, v_2^*) - L(u_1^*, v_2^*)L(u_2^*, v_1^*) \quad \text{for} \ u, v \in g,
\]

(2)

where \(u = u_1^* \wedge u_2^* \) and \(v = v_1^* \wedge v_2^* \) with respect to the identification \(\wedge^2 g^* \cong g \). Then it can be easily checked that the representation matrix of \(S \) coincides with the cofactor matrix \(A^* \) of \(A \). Since \(A'^* = P^tA^*P \), the bilinear form \(S \) is determined independently of the choice of a basis. The following lemma is immediately obtained from the Jacobi identity.

Received by the editors October 3, 1990.

1991 Mathematics Subject Classification. Primary 17B05; Secondary 17B30.

Key words and phrases. 3-dimensional Lie algebra.

©1992 American Mathematical Society
Lemma. The bilinear form S is symmetric, namely, $A^* = A^*$.

It should be remarked that g is unimodular if and only if the matrix A is symmetric. When k is algebraically closed, the isomorphism classes of 3-dimensional unimodular Lie algebras are classified by the rank of the matrix A.

Theorem 1. Let g be a 3-dimensional Lie algebra. Then the bilinear form S defined by (2) is proportional to the Killing form F of g.

Proof. Let B be a representation matrix of the Killing form F. By a straightforward calculation, one can obtain the identity $B = A^* - 2A^*$, where A^* is the cofactor matrix of $A = A - A^*$. If g is unimodular, then $A^* = 0$ and $F = -2S$ holds. So we may assume that g is not unimodular. Then g is solvable and the basis $\{e_1, e_2, e_3\}$ can be chosen such that $a_{ij} = a_{ji} = 0 (i = 1, 2, 3)$ (see [1, p. 12]). Then one can easily verify that $A^* - 2A^*$ is proportional to A^*. This proves the theorem.

By the theorem, we can define an invariant $\chi(g) \in \mathbb{P} = k \cup (\infty)$ by $F = (\chi(g) - 2)S$, unless $F = S = 0$; namely, g is neither Heisenberg nor abelian. There is another exceptional Lie algebra denoted by t, which is characterized by the property that the matrix A is skew symmetric. One can easily verify that the well-known classification theorem (e.g., [1, p. 13; 2, Lemma 4.10]) of 3-dimensional Lie algebras is rewritten in the following

Theorem 2. Let g be a 3-dimensional Lie algebra that is neither unimodular nor isomorphic to t. Then there exists a basis $\{e_1, e_2, e_3\}$ of g such that

$$[e_3, e_2] = e_1, \quad [e_2, e_1] = -e_1 + \frac{1}{\chi(g)}e_2 \quad \text{and} \quad [e_1, e_2] = 0.$$

References

Institute of Mathematics, University of Tsukuba, Tsukuba, Ibaraki 305, Japan

Department of Mathematics, College of General Education, Osaka University, Toyonaka, Osaka, 560, Japan

Current address: Masaaki Umehara: Department of Mathematics, College of General Education, Osaka University, Toyonaka, Osaka, 560 Japan

E-mail address: Hiroyuki Tasaki: a906023@sakura.cc.tsukuba.ac.jp