Furuta's inequality and a generalization of Ando's theorem

Authors:
Masatoshi Fujii and Eizaburo Kamei

Journal:
Proc. Amer. Math. Soc. **115** (1992), 409-413

MSC:
Primary 47A63; Secondary 47B15

DOI:
https://doi.org/10.1090/S0002-9939-1992-1091180-1

MathSciNet review:
1091180

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: As a continuation of our preceding notes, we discuss Furuta's inequality under the chaotic order defined by for positive invertible operators and . We prove that Furuta's type inequalities and hold true for , which is a generalization of an inequality due to Ando (Math. Ann. **279** (1987), 157-159).

**[1]**T. Ando,*On some operator inequalities*, Math. Ann.**279**(1987), 157-159. MR**912844 (89c:47019)****[2]**M. Fujii,*Furuta's inequality and its mean theoretic approach*, J. Operator Theory**23**(1990), 67-72. MR**1054816 (91g:47012)****[3]**M. Fujii, T. Furuta, and E. Kamei,*Operator functions associated with Furuta's inequality*, Linear Algebra Appl.,**149**(1991), 91-96. MR**1092871 (92e:47023)****[4]**M. Fujii and E. Kamei,*Furuta's inequality for the chaotic order*, Math. Japon.,**36**(1991), 603-606.**[5]**-,*Furuta's inequality for the chaotic order*, II, Math. Japon.,**36**(1991), 717-722.**[6]**T. Furuta,*assures**for**with*, Proc. Amer. Math. Soc.**101**(1987), 85-88. MR**897075 (89b:47028)****[7]**-,*A proof via operator means of an order preserving inequality*, Linear Algebra Appl.**113**(1989), 129-130. MR**978587 (89k:47023)****[8]**-,*Two operator functions with monotone property*, Proc. Amer. Math. Soc.**1ll**(1991), 511-516. MR**1045135 (91f:47023)****[9]**F. Hansen,*Selfadjoint means and operator monotone functions*, Math. Ann.**256**(1981), 29-35. MR**620119 (82h:47020)****[10]**E. Kamei,*Furuta's inequality via operator mean*, Math. Japon.**33**(1988), 737-739. MR**972385 (90c:47037)****[11]**-,*A satellite to Furuta's inequality*, Math. Japon.**33**(1988), 883-886. MR**975867 (89m:47011)****[12]**F. Kubo and T. Ando,*Means of positive linear operators*, Math. Ann.**246**(1980), 205-224. MR**563399 (84d:47028)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
47A63,
47B15

Retrieve articles in all journals with MSC: 47A63, 47B15

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1992-1091180-1

Article copyright:
© Copyright 1992
American Mathematical Society