SOME REMARKS OF DROP PROPERTY

PEI-KEE LIN

(Communicated by William J. Davis)

Abstract. Let C be a proper closed convex set. C is said to have the drop property if for any nonempty closed set A disjoint with C, there is $a \in A$ such that $\text{co}(a, C) \cap A = \{a\}$. We show that if X contains a noncompact set with the drop property, then X is reflexive. Moreover, we prove that if C is a noncompact closed convex subset of a reflexive Banach space, then C has the drop property if and only if C satisfies the following conditions: (i) the interior of C is nonempty; (ii) C does not have any asymptote, and the boundary of C does not contain any ray; and (iii) every support point x of C is a point of continuity.

1. Introduction

Let $(X, \|\cdot\|)$ be a real Banach space, and let C be a nonempty proper closed convex subset of X. For any $x \in C$, the drop determined by x is the set $D(x, C) = \text{co}(x, C)$, the convex hull of the set $\{x\} \cup C$. Danes [D] proved that if C is a bounded closed subset of X and A is a closed set at positive distance from C, then there exists an $a \in A$ such that $D(a, C) \cap A = \{a\}$. Modifying the assumption, Rolewicz [R1] said a nonempty proper closed set C has the drop property if for every nonempty closed set A disjoint with C, there exists a point $a \in A$ such that $D(a, C) \cap A = \{a\}$. The bounded closed convex sets with the drop property are studied in [K1, K2, M, R1, R2]. In [R1] Rolewicz proved that if the closed unit ball of X has the drop property (in this case, we say X has the drop property), then X is reflexive. Kutzarova [K1] extended this result by showing X is reflexive if X contains a noncompact bounded closed convex set (respectively, a noncompact balanced closed convex set) with the drop property. Recently, Kutzarova and Rolewicz [KR1] showed that X is reflexive if X contains a noncompact closed convex symmetric set with the drop property.

For any subset C of X, the Kuratowski measure of C is the infimum $\alpha(C)$ of those $\epsilon > 0$ for which there is a covering of C by a finite number of sets of diameter less then ϵ. It is known that $\alpha(C) = 0$ if and only if C is totally bounded. Let C be a closed convex subset of X. We denote the set of all nonzero linear functionals $f \in X^*$, which are bounded above C by $F(C)$.
For any $f \in F(C)$, and any $\delta > 0$, the slice $S(f, C, \delta)$ is the set
\[\{ x \in C : f(x) \geq M - \delta \}, \]
where $M = \sup\{ f(x) : x \in C \}$. A closed convex set C is said to have property (α) if
\[\lim_{\delta \to 0} \alpha(S(f, C, \delta)) = 0 \]
for all $f \in F(C)$. It is easy to see that a closed convex set C has property (α) if and only if for any $f \in F(C)$ and $x_n \in S(f, C, \frac{1}{n})$, \{x_n\} contains a convergent subsequence. In [KR1] Kutzarova and Rolewicz proved the following

Theorem A. Let C be any closed convex subset of X.

(i) If C has the drop property, then C has property (α).

(ii) If C is not compact and if C has the drop property, then C has nonempty interior.

(iii) Suppose X is reflexive. If C has nonempty interior and C has property (α), then C has the drop property.

(iv) Let C be a closed bounded convex set of a reflexive Banach space. If int$(C) \neq \emptyset$ (where int(C) is the interior of C) and every support point of C is a point of continuity, then C has drop property.

Using Theorem A, they proved that if C_1 and C_2 are any two bounded sets with the drop property, then $C_1 \cap C_2$, $C_1 + C_2$, and co(C_1, C_2) have the drop property. In §2 we show the assumption of boundedness can be removed. Hence, if X contains a noncompact closed convex set with the drop property, then X is reflexive. This gives an answer to a question of D. N. Kutzarova and S. Rolewicz [KR1].

Let C be a closed convex set. C is said to have property $(*)$ if C contains the ray $\{ c + \lambda b : \lambda \geq 0 \}$ implies for any $x \in X$, there is $\beta > 0$ such that $x + (\beta + \lambda)b \in C$ for every $\lambda \geq 0$. In §2 we prove that if C is a noncompact proper closed convex set of a reflexive Banach space, then C has the drop property if and only if int$(C) \neq \emptyset$, C has property $(*)$, and every support point of C is a point of continuity. This gives an extension of Theorem A(iv).

Recall a space X is said to have the Kadec-Klee property (or property (H)) if on the unit sphere the weakly convergent sequence is convergent in norm (i.e., if $\|x_n\| = 1$ and x_n converges weakly to a unit vector x, then x_n converges to x in norm). V. Montesinos [M] proved that X has the drop property if and only if X is reflexive and X has the Kadec-Klee property. Recall that a sequence $\{x_n\}$ is said to be an ϵ-separate sequence for some $\epsilon > 0$ if $\text{sep}(x_n) = \inf\{\|x_n - x_m\| : n \neq m\} > \epsilon$. A Banach space X is said to have the uniform Kadec-Klee property if for every $\epsilon > 0$ there is a $\delta > 0$ such that if x is a weak limit of a norm one ϵ-separate sequence, then $\|x\| < 1 - \delta$. A Banach space is said to be nearly uniformly convex (NUC) if for every $\epsilon > 0$ there exists a δ, $1 > \delta > 0$, such that for every sequence $\{x_n\} \subseteq B$ with $\text{sep}(x_n) > \epsilon$, we have $\text{co}(x_n) \cap (1 - \delta)B \neq \emptyset$. It is easy to see that every (NUC) space has the uniform Kadec-Klee property, and every Banach space with the uniform Kadec-Klee property has the Kadec-Klee property. Huff [H] proved that X is (NUC) if and only if X is reflexive and X has the uniform Kadec-Klee property. Modifying the theorem, Kutzarova and Rolewicz [KR2] said a closed convex set is (NUC) (respectively (NUC')) with respect to a center $c \in C$ if
for every $\varepsilon > 0$ there exists a δ, $1 > \delta > 0$, such that for every ε-separate sequence $\{x_n\} \subseteq C$

$$\text{co}(x_n) \cap (1 - \delta)(C - c) \neq \emptyset$$

(respectively, $\text{co}(x_n) \cap (1 - \delta)(C - c) \neq \emptyset$).

It is easy to see that if C is (NUC) with respect to $c \in C$, then C is (NUC') with respect to c. Kutzarova and Rolewicz [KR2] proved that if c is an interior point of C, then C is (NUC) with respect to c if and only if C is (NUC') with respect to any c. They asked whether this is still true if c is a boundary point of C. In §3, we show this is true if C has the drop property. We also give an example to show the assumption of the drop property cannot be removed.

2. On the drop property

In [KR1] Kutzarova and Rolewicz asked whether X is reflexive if X contains a noncompact closed convex with the drop property. The following theorem shows the answer is affirmative.

Theorem 1. Let C_1 and C_2 be any two closed convex subsets of X with the drop property. If $C_1 \cap C_2 \neq \emptyset$, then $C_1 \cap C_2$ has the drop property. Hence, if X contains a noncompact closed convex set with the drop property, then X is reflexive.

Proof. Let A be any closed subset of X such that $A \cap (C_1 \cap C_2) = \emptyset$. If $A \cap C_1 = \emptyset$, then there exists $a \in A$ such that $D(a, C_1) \cap A = \{a\}$. This implies $D(a, (C_1 \cap C_2)) \cap A = \{a\}$. So we may assume that $A \cap C_1 \neq \emptyset$. Since $(A \cap C_1) \cap C_2 = \emptyset$ and C_2 has the drop property, there is $a \in A \cap C_1$ such that $D(a, C_2) \cap (A \cap C_1) = \{a\}$. So

$$D(a, (C_2 \cap C_1)) \cap A \subseteq (D(a, (C_2 \cap C_1)) \cap C_1) \cap A = \{a\},$$

and $C_1 \cap C_2$ has the drop property.

It is easy to see that if X contains a noncompact closed convex set with the drop property, then X contains a noncompact symmetric closed convex set with the drop property. By [KR1, Proposition 4], X is a reflexive space. □

Remark 1. Let C be an unbounded closed convex set of a reflexive space. Kutzarova and Rolewicz proved that if $S(f, C, 1)$ is bounded for some $f \in F(C)$, then C contains a ray $\{c + \beta b : \beta > 0\}$. Moreover, if $c' \in C$, C also contains the ray $\{c' + \beta b : \beta > 0\}$.

Let C_1 and C_2 be any two bounded closed convex sets with the drop property. In [KR1] Kutzarova and Rolewicz proved that $\lambda C_1 + \mu C_2$ and $\text{co}(C_1, C_2)$ have the drop property. The following theorem shows that the boundedness can be removed.

Theorem 2. Let C_1 and C_2 be any two closed convex sets with the drop property. If $\text{co}(C_1, C_2) \neq X$, then

(i) for any $\lambda, \mu \neq 0$, $\lambda C_1 + \mu C_2$ is closed, and it has the drop property;

(ii) $\text{co}(C_1, C_2)$ is closed, and it has the drop property.

Proof. We only prove (ii) and leave the proof of (i) to the reader. If C_1 and C_2 are compact, then $\text{co}(C_1, C_2)$ is compact. So we may assume that $\text{co}(C_1, C_2)$ has an interior point.
First, we show $\text{co}(C_1, C_2)$ has property (α). If $f \in F(\text{co}(C_1, C_2))$, then $f' \in F(C_1) \cap F(C_2)$. Let x (respectively, x') be a point in C_1 (respectively, C_2) such that

$$f(x) = \sup\{f(y) : y \in C_1\}$$

(respectively, $f(x') = \sup\{f(y) : y \in C_2\}$).

One can easily show that

$$S(f, \text{co}(C_1, C_2), \delta) = \text{co}(x, x') + (S(f, C_1, \delta) - x) + (S(f, C_2, \delta) - x').$$

(Compare with the proof of [KR1, Theorem 9 (iii)].) So

$$\lim_{\delta \to 0} \alpha(S(f, \text{co}(C_1, C_2), \delta) = 0$$

and

$$\text{co}(C_1, C_2)\text{has property } (\alpha).$$

Suppose that $b \in \text{co}(C_1, C_2) \setminus \text{co}(C_1, C_2) \neq \emptyset$. By Hahn-Banach Theorem, there is a linear functional f such that $f(b) \geq f(x)$ for all $x \in \text{co}(C_1, C_2)$. Since $b \in \text{co}(C_1, C_2)$ there exist $x_n \in C_1$, $x'_n \in C_2$, and $0 \leq \beta_n \leq 1$ such that

$$\lim_{n \to \infty} \beta_n x_n + (1 - \beta_n)x'_n = b.$$

By passing to a subsequence, we may assume that $\{\beta_n\}$ converges to some β, $0 \leq \beta \leq 1$. It is easy to see that if $\beta \neq 0$ (respectively, $\beta \neq 1$), then

$$\lim_{n \to \infty} f(x_n) = \sup\{f(y) : y \in C_1\}$$

(respectively, $\lim_{n \to \infty} f(x'_n) = \sup\{f(y) : y \in C_2\}$).

But C_1 and C_2 have the drop property. Hence, if $\beta \neq 0$ (respectively, $\beta \neq 1$), then $\{x_n\}$ (respectively, $\{x'_n\}$) contains a subsequence that converges to some element

$$x \in \{y \in C_1 : f(y) = \sup\{f(z) : z \in C_1\}(= f(b))\}$$

(respectively, $x' \in \{y \in C_2 : f(y) = \sup\{f(z) : z \in C_2\}(= f(b))\}$).

So if $0 < \beta < 1$, then $b = \beta x + (1 - \beta)x' \in \text{co}(C_1, C_2)$. On the other hand, if $\beta = 1$ (respectively, $\beta = 0$), then

$$b = \lim_{n \to \infty} (\beta_n x_n + (1 - \beta_n)x'_n) \in \text{co}(C_1, C_2)$$

(respectively, $b = \lim_{n \to \infty} (\beta_n x_n + (1 - \beta_n)x'_n) \in \text{co}(C_1, C_2)$).

By Proposition 5 of [KR1], $D(x, C_2)$ and $D(x', C_1)$ are closed sets. So $b \in \text{co}(C_1, C_2)$; we get a contradiction. \(\Box\)

Lemma 3. Let C be a closed convex set with nonempty interior. If C has property (α), then C has property (\ast).

Proof. Suppose it is not true. There exist $c \in C$ and $b, x \in X$ such that $b \neq 0$, \(\{c + \lambda b : \lambda \geq 0\} \subseteq C\) but \(\{x + \lambda b : \lambda \geq 0\} \cap C\) is not a ray. By the simple convexity argument (see [KR1, Proof of Lemma 2]), the line \(\{x + \lambda b : \lambda \in \mathbb{R}\}\)
some remarks of drop property

is disjoint with C. Since C has at least one interior point, by Hahn-Banach Theorem, there is f ∈ X* such that

\[\inf \{ f(x + \lambda b) : \lambda \in \mathbb{R} \} \geq M = \sup \{ f(y) : y \in C \}. \]

This implies f(b) = 0, and S(f, C, M − f(c) + 1) contains a ray. We get a contradiction and C must have property (\(\ast \)). □

Remark 2. Let C be a closed convex subset of X. A ray \(r = \{ x + \lambda y : \lambda > 0 \} \) is said to be an asymptote if \(r \cap C = \emptyset \), and for any \(\epsilon > 0 \) there is \(N > 0 \) such that \(\lambda > N \) implies \(d(x + \lambda y, C) = \inf \{ \| x + \lambda y - c \| : c \in C \} < \epsilon \). Suppose C is a closed convex set with nonempty interior. Then C has property (\(\ast \)) if and only if C does not have any asymptote and the boundary of C does not contain any ray. The proof is left to the reader.

Let C be a closed convex set. \(c \in C \) is said to be a support point of C if there exists \(f \in X^* \), \(f \neq 0 \), such that \(f(c) = \sup \{ f(x) : x \in C \} \). A point c in C is said to be a point of continuity if for every sequence \(\{ x_n \} \) in C, \(\{ x_n \} \) converges to c weakly implies \(\{ x_n \} \) converges to c in norm.

Theorem 4. Let C be a noncompact closed convex subset of a reflexive Banach space. Then the following are equivalent.

1. C has the drop property;
2. int(C) ≠ ∅ and C has property (α);
3. int(C) ≠ ∅, C has property (\(\ast \)), and every support point x of C is a point of continuity.

Proof. By Theorem A and Lemma 3, we only need to show (iii) implies (ii). First, we claim that for each \(f \in F(C) \), \(S(f, C, \delta) \) is bounded. Suppose it is not true. There exist \(f \in F(C) \) and \(\{ x_n \} \subseteq C \) such that \(\lim_{n \to \infty} \| x_n \| = \infty \) and \(\lim_{n \to \infty} f(x_n) = M = \sup \{ f(x) : x \in C \} \). Let y be any vector in X such that \(\| y \| < 2 \) and \(f(y) = 1 \).

Case 1. There is a subsequence of \(\{ x_n/\| x_n \| \} \) that converges weakly to a nonzero vector \(b \in X \). Then \(r = \{ x_1 + \lambda b : \lambda \geq 0 \} \subseteq C \) and \(f(b) = \lim_{n \to \infty} f(x_n)/\| x_n \| = 0 \), but the ray \(\{ (M + 1)y + \lambda b : \lambda > 0 \} \) is disjoint with C. We get a contradiction.

Case 2. The \(\{ x_n/\| x_n \| \} \) converges weakly to 0. Without loss of generality, we may assume that 0 is on the boundary of C. So \(\{ x_n/\| x_n \| \} \) converges to 0 in norm. This is impossible, and we prove our claim.

Let \(x_0 \) be any point in \(S(f, C, \frac{1}{b}) \). Since X is reflexive, \(\{ x_n \} \) contains a weakly convergent subsequence \(\{ x_{n_k} \} \), say it converges to \(y \in C \) weakly. Clearly, \(f(y) = \sup \{ f(x) : x \in C \} \). So \(y \) is a support point, and \(\{ x_{n_k} \} \) converges to \(y \). This implies C has property (\(\alpha \)). □

3. Nearly uniform convexity

Recall a closed convex set is said to be (NUC') with a center \(a \) if for every \(\epsilon > 0 \) there exists a \(\delta \), \(1 > \delta > 0 \) such that for every \(\epsilon \)-separate sequence in C, \(\cap_0 \{ (a + (1 - \delta)(C - a)) \} \neq \emptyset \). It is easy to see that if C is (NUC) with respect to an \(a \in \text{int}(C) \) if and only if C is (NUC') with respect to a. In [KR2] D. N. Kutzarova and S. Rolewicz asked whether (NUC) and (NUC') are equivalent. The following theorem shows the answer is affirmative if C has the drop property.
Theorem 5. Let C be a closed convex set with the drop property and $c \in C$. Then C is (NUC) with respect to c if and only if C is (NUC') with respect to c.

Proof. Since every compact convex set is (NUC), we may assume that the interior of C is nonempty. Let $\{x_n\}$ be an ϵ-separate sequence in C. If $\{x_n\}$ is not bounded, then $\overline{co}(x_n)$ contains the ray $r = \{x_1 + \lambda b : \lambda \geq 0\}$ for some $b \neq 0$. By Lemma 3, there exists $\beta > 0$ such that $c + 2(x_1 - c + \frac{\beta}{2} b) = c + 2(x_1 - c) + \beta b \in \text{int}(C)$. So $x_1 + \frac{\beta}{2} b \in \overline{co}(x_n) \cap \text{int}(c + \frac{1}{2}(C - c)) \neq \emptyset$.

If $\{x_n\}$ is bounded, then by passing to a subsequence we may assume $\{x_n\}$ converges weakly, say it converges to $y \in c + (1 - \delta)(C - c)$ weakly. Since C has the drop property, y is an interior point of C. This implies $y \in \text{int}(c + (1 - \frac{\delta}{2})(C - c))$ and we prove the theorem. \qed

Remark 3. The proof of the above theorem shows that if C has the drop property, then C is (NUC) with respect to c if and only if it satisfies the following condition:

(o) for any $\epsilon > 0$, there is δ, $0 < \delta < 1$, such that if x is a weak limit of an ϵ-separate sequence in C, then $x \in c + (1 - \delta)(C - c)$.

The following example shows the drop property cannot be removed from the above theorem.

Example 1. Let $\{e_n\}$ be the natural basis of ℓ_2, and let C be the closed convex hull of $\{e_n : n \in \mathbb{N}\}$. Clearly, $0 \in C$. For any $0 < \delta < 1$ and for any $c \in \text{co}\{e_n : n \in \mathbb{N}\}$, $(1 - \delta)^{-1}c \notin C$. So C is not (NUC) with respect to 0. We claim that if x is a weak limit of an $\epsilon\sqrt{2}$-separate sequence $\{x_n\} \subseteq C$, then $x \in (1 - \epsilon)c$.

By passing to a subsequence and perturbing (x_n), we may assume that there exists a block sequence $\{z_n\}$ such that $x_n = x + z_n$ and $\|z_n\|_2 \geq \epsilon$. But $\|z_n\|_1 \geq \|z_n\|_2$. We have $x \in (1 - \epsilon)c$. So C is (NUC') with respect to 0.

References

Department of Mathematics, Memphis State University, Memphis, Tennessee 38152