Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Cylinder functions in the Fresnel class of functions on abstract Wiener spaces


Authors: Dong Myung Chung and Hong Taek Hwang
Journal: Proc. Amer. Math. Soc. 115 (1992), 381-388
MSC: Primary 28C20; Secondary 46G12
DOI: https://doi.org/10.1090/S0002-9939-1992-1097340-8
MathSciNet review: 1097340
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we consider the class of cylinder functions on abstract Wiener space $ B$ and give necessary and sufficient conditions of cylinder functions on $ B$ to be in the Banach algebra $ \mathfrak{F}\left( B \right)$ (resp. $ {\mathfrak{F}^*}\left( B \right)$) of analytic (resp. sequential) Feynman integrable functions on $ B$. The results here subsume similar known results obtained by Chang, Johnson, and Skoug in the setting of Hilbert and Wiener spaces.


References [Enhancements On Off] (What's this?)

  • [1] S. Albeverio and R. Hoegh-Krohn, Mathematical theory of Feynman path integrals, Lecture Notes in Math., vol. 523, Springer-Verlag, Berlin, 1976. MR 0495901 (58:14535)
  • [2] R. H. Cameron and D. A. Storvick, Some Banach algebras of analytic Feynman integrable functionals in analytic functions, Kozubnik, 1979, Lecture Notes in Math., vol. 798, Springer-Verlag, Berlin, 1980, pp. 18-67. MR 577446 (83f:46059)
  • [3] -, A simple definition of the Feynman integral with applications, Mem. Amer. Math. Soc., vol. 46, no. 288, Amer. Math. Soc., Providence, RI, 1983, pp. 1-46. MR 719157 (86c:81029)
  • [4] K. S. Chang, G. W. Johnson, and D. L. Skoug, Necessary and sufficient conditions for the Fresnel integrability of certain classes of functions, J. Korean Math. Soc. 21 (1984), 21-29. MR 760389 (86b:46070)
  • [5] -, Necessary and sufficient conditions for membership in the Banach algebra $ S$ for certain classes of functions, Circ. Mat. Palermo. (suppl.) 17 (1987), 153-171. MR 950414 (90b:46093)
  • [6] -, Functions in the Fresnel class, Proc. Amer. Math. Soc. 100 (1987), 309-318. MR 884471 (88e:42025)
  • [7] -, Functions in the Banach algebra $ S\left( \nu \right)$, J. Korean Math. Soc. 24 (1987), 121-132.
  • [8] Dong M. Chung, Scale-invariant measurability in abstract Wiener spaces, Pacific J. Math. 130 (1987), 27-40. MR 910652 (88m:28009)
  • [9] Dong M. Chung and Soon J. Kang, Evaluation formulas for conditional abstract Wiener integrals, Stochastic Anal. Appl. 7 (1989), 125-144. MR 997275 (90j:60039)
  • [10] G. W. Johnson, The equivalence of two approaches to the Feynman integral, J. Math. Phys. 23 (1982), 2090-2096. MR 680005 (85d:81047)
  • [11] G. W. Johnson and D. L. Skoug, Scale-invariant measurability in Wiener space, Pacific J. Math. 83 (1979), 157-176. MR 555044 (81b:28016)
  • [12] -, Notes on the Feynman integral. I, Pacific J. Math. 93 (1981), 313-324. MR 623567 (85k:81070a)
  • [13] -, Notes on the Feynman integral III: The Schroedinger equation, Pacific J. Math. 105 (1983), 321-358. MR 691608 (85k:81070c)
  • [14] G. Kallianpur and D. C. Bromley, Generalized Feynman integrals using analytic condition in several complex variables, Stochastic Analysis and Applications (M. A. Pinsky, ed.), Marcel-Dekker, New York, 1984. MR 776983 (86m:60007)
  • [15] G. Kallianpur, D. Kannan, and R. L. Karandikar, Analytic and sequential Feynman integrals on abstract Wiener and Hilbert spaces and a Cameron-Martin formula, Annales de l'Institut Henri Poincaré-Probabilités et Statistiques, 21 (1985), 323-361. MR 823080 (87f:28008)
  • [16] H. H. Kuo, Gaussian measure in Banach spaces, Lecture Notes in Math., vol. 463, Springer-Verlag, Berlin, 1975. MR 0461643 (57:1628)
  • [17] W. Rudin, Real and complex analysis, MacGraw-Hill, New York, 1966. MR 0210528 (35:1420)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 28C20, 46G12

Retrieve articles in all journals with MSC: 28C20, 46G12


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1992-1097340-8
Article copyright: © Copyright 1992 American Mathematical Society

American Mathematical Society