Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On changing fixed points and coincidences to roots


Authors: Robin Brooks and Peter Wong
Journal: Proc. Amer. Math. Soc. 115 (1992), 527-533
MSC: Primary 55M20
DOI: https://doi.org/10.1090/S0002-9939-1992-1098397-0
Correction: Proc. Amer. Math. Soc. 118 (1993), 1353-1354.
MathSciNet review: 1098397
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The coincidence problem, finding solutions to $ f(x) = g(x)$, can sometimes be converted to a root problem, finding solutions to $ \sigma (x) = a$. As an application, we show that for any two maps $ f,g:M \to M,N(f,g) = \vert L(f,g)\vert$ where $ M$ is a compact connected nilmanifold, $ N(f,g)$ and $ L(f,g)$ are the Nielsen and Lefschetz numbers, respectively, of $ f$ and $ g$. This result in the case where $ g$ is the identity is due to D. Anosov.


References [Enhancements On Off] (What's this?)

  • [1] D. Anosov, The Nielsen number of maps of nilmanifolds, Russian Math. Surveys 40 (1985), 149-150.
  • [2] R. Brooks, Certain subgroups of the fundamental group and the number of roots of $ f(x) = a$, Amer. J. Math. 95 (1973), 720-728. MR 0346777 (49:11501)
  • [3] -, Coincidences roots and fixed points, PhD Thesis, Univ. of California, Los Angeles, CA, 1967.
  • [4] R. Brooks and R. Brown, A lower bound for the $ \Delta $-Nielsen number, Trans. Amer. Math. Soc. 143 (1969), 555-564. MR 0276959 (43:2698)
  • [5] R. F. Brown, The Lefschetz fixed point theorem, Scott Foresman, IL, 1971. MR 0283793 (44:1023)
  • [6] A. Dold, Lectures on algebraic topology, Springer-Verlag, Heidelberg, 1972. MR 0415602 (54:3685)
  • [7] E. Fadell, Two vignettes in fixed point theory, Lecture Notes in Math., vol. 1411, Springer-Verlag, 1989, pp. 46-51. MR 1031781 (90j:55002)
  • [8] E. Fadell and S. Husseini, On a theorem of Anosov on Nielsen numbers for nilmanifolds, Nonlin. Funct. Anal. Appl. 173 (1986), 47-53. MR 852569 (87j:55004)
  • [9] J. Jezierski, The Nielsen number product formula for coincidences, Fund. Math. 134 (1989), 183-212. MR 1071665 (91i:55002)
  • [10] B. Jiang, Lectures on Nielsen fixed point theory, Contemp. Math., vol. 14, Amer. Math. Soc., Providence, RI, 1982. MR 685755 (84f:55002)
  • [11] T. Kiang, The theory of fixed point classes, Springer-Verlag, Heidelberg, 1989. MR 1002187 (90h:55002)
  • [12] C. McCord, Lefschetz and Nielsen coincidence numbers on nilmanifolds and solvmanifolds, Top. Appl., to appear. MR 1158871 (93b:55003)
  • [13] M. Nakaoka, Coincidence Lefschetz numbers for a pair of fibre preserving maps, J. Math. Soc. Japan 32 (1980), 751-779. MR 589111 (82c:55003)
  • [14] H. Schirmer, Mindestzahlen von Koinzidenzpunkten, J. Reine Angew. Math. 194 (1955), 21-39. MR 0073172 (17:394e)
  • [15] J. Vick, Homology theory, Academic Press, New York, 1973. MR 0375279 (51:11475)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 55M20

Retrieve articles in all journals with MSC: 55M20


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1992-1098397-0
Keywords: Fixed points, coincidences, roots, Lefschetz number, Nielsen number, degree, nilmanifold
Article copyright: © Copyright 1992 American Mathematical Society

American Mathematical Society