Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Sample path-valued conditional Yeh-Wiener integrals and a Wiener integral equation


Authors: Chull Park and David Skoug
Journal: Proc. Amer. Math. Soc. 115 (1992), 479-487
MSC: Primary 28C20; Secondary 60J65
DOI: https://doi.org/10.1090/S0002-9939-1992-1104401-3
MathSciNet review: 1104401
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we evaluate the conditional Yeh-Wiener integral $ E(F(x)\vert x(s,t) = \xi )$ for functions $ F$ of the form

$\displaystyle F(x) = \exp \{ \int_0^t {\int_0^s \phi } (\sigma ,\tau ,x(\sigma ,\tau ))d\sigma d\tau \} .$

The method we use to evaluate this conditional integral is to first define a sample path-valued conditional Yeh-Wiener integral of the type $ E(F(x)\vert x(s,) = \psi ())$ and show that it satisfies a Wiener integral equation. We next obtain a series solution for $ E(F(x)\vert x(s,) = \psi ())$ by solving this Wiener integral equation. Finally, we integrate this series solution appropriately in order to evaluate $ E(F(x)\vert x(s,t) = \xi )$.

References [Enhancements On Off] (What's this?)

  • [1] R. H. Cameron and D. A. Storvick, An operator valued Yeh-Wiener integral and a Wiener integral equation, Indiana Univ. Math. J. 25 (1976), 235-258. MR 0399403 (53:3247)
  • [2] K. S. Chang, J. M. Ahn, and J. S. Chang, An evaluation of the conditional Yeh-Wiener integral, Pacific J. Math. 124 (1986), 107-117. MR 850669 (88e:60094)
  • [3] D. M. Chung and J. M. Ahn, Conditional Yeh-Wiener integrals, J. Korean Math. Soc., 20 (1983), 209-221. MR 745356 (85j:28013)
  • [4] J. L. Doob, Stochastic processes, Wiley, New York, 1965. MR 1038526 (91d:60002)
  • [5] C. Park, On Fredholm transformations in Yeh-Wiener space, Pacific J. Math. 40 (1972), 173-195. MR 0304604 (46:3739)
  • [6] C. Park and D. L. Skoug, A simple formula for conditional Wiener integrals with applications, Pacific J. Math. 135 (1988), 381-394. MR 968620 (90c:28022)
  • [7] -, Conditional Yeh-Wiener integrals with vector-valued conditioning functions, Proc. Amer. Math. Soc. 105 (1989), 450-461. MR 960650 (89m:60198)
  • [8] J. Yeh, Wiener measure in a space of functions of two variables, Trans. Amer. Math. Soc., 95 (1960), 433-450. MR 0125433 (23:A2735)
  • [9] -, Stochastic processes and the Wiener integral, Marcel Dekker, New York, 1983.
  • [10] -, Inversion of conditional Wiener integrals, Pacific J. Math. 59 (1975), 623-638. MR 0390162 (52:10988)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 28C20, 60J65

Retrieve articles in all journals with MSC: 28C20, 60J65


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1992-1104401-3
Keywords: Yeh-Wiener integral, conditional Yeh-Wiener integral, Wiener integral equation
Article copyright: © Copyright 1992 American Mathematical Society

American Mathematical Society