Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Rational modules and Cauchy transforms. II


Author: James Li Ming Wang
Journal: Proc. Amer. Math. Soc. 115 (1992), 405-408
MSC: Primary 46J10; Secondary 30E10
DOI: https://doi.org/10.1090/S0002-9939-1992-1104404-9
MathSciNet review: 1104404
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We apply the higher order Cauchy transform to describe the closures of rational modules with respect to the uniform norm, the $ {L^p}$ norm, and the BMO norm on a compact set in the plane.


References [Enhancements On Off] (What's this?)

  • [1] J. Brennan, Invariant subspace and weighted polynomial approximation, Ark. Mat. 11 (1973), 167-189. MR 0350398 (50:2891)
  • [2] P. J. Holden, Extension theorem for functions of vanishing mean oscillation, Ph. D. Thesis, California Inst. of Technology, 1987.
  • [3] J. Mateu and J. Verdera, BMO harmonic approximations in the plane and spectral synthesis for Hardy-Sobolev spaces, Revista Matem. Iberoamericana 4 (1988), 291-318. MR 1028743 (91e:42033)
  • [4] A. G. O'Farrell, Annihilators of rational modules, J. Funct. Anal. 19 (1975), 373-389. MR 0380428 (52:1328)
  • [5] E. M. Stein, Singular integrals and differentiability properties of functions, Princeton Univ. Press, Princeton, NJ, 1970. MR 0290095 (44:7280)
  • [6] T. Trent and J. Wang, Uniform approximations by rational modules on nowhere dense sets, Proc. Amer. Soc. 81 (1981), 62-64. MR 589136 (81j:30062)
  • [7] J. Wang, Rational modules and higher order Cauchy transforms, Internat. J. Math. Math. Sci. 4 (1981), 661-665. MR 663651 (83k:46043)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 46J10, 30E10

Retrieve articles in all journals with MSC: 46J10, 30E10


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1992-1104404-9
Keywords: Rational module, Cauchy transform
Article copyright: © Copyright 1992 American Mathematical Society

American Mathematical Society