Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A splitting theorem for the $ n$-r.e. degrees


Author: S. Barry Cooper
Journal: Proc. Amer. Math. Soc. 115 (1992), 461-471
MSC: Primary 03D25
DOI: https://doi.org/10.1090/S0002-9939-1992-1105037-0
MathSciNet review: 1105037
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We prove a splitting theorem for the n-r.e. degrees, of which the Sacks Splitting Theorem [9] for the r.e. (= 1-r.e.) degrees is a special case. For background terminology and notation see [4] and [11].


References [Enhancements On Off] (What's this?)

  • [1] M. M. Arslanov, Structural properties of the degrees below 0', Dokl. Akad. Nauk. SSSR 283 (1985), 270-273. MR 804113 (87e:03095)
  • [2] N. R. Bukaraev, On $ T$-degrees of differences of recursively enumerable sets, Izv. Vyssh. Uchebn. Zaved. Mat. 228 (1981), 40-49 (Russian); English transl.: Sov. Math. (IzVUZ) 25 (1981), 40-52. MR 630482 (82k:03063)
  • [3] S. B. Cooper, L. Harrington, A. H. Lachlan, S. Lempp, and R. I. Soare, The d-r.e. degrees are not dense, to appear in Annals of Pure and Applied Logic. MR 1141717 (93a:03045)
  • [4] S. B. Cooper, S. Lempp, and P. Watson, Weak density and cupping in the d-r.e. degrees, Israel J. Math. 67 (1989), 137-152. MR 1026559 (91f:03087)
  • [5] R. G. Downey, D-r.e. degrees and the nondiamond theorem, Bull. London Math. Soc. 21 (1989), 43-50. MR 967789 (90j:03082)
  • [6] Sh. T. Ishmuchametov, On differences of recursively enumerable sets, Izv. Vyssh. Uchebn. Zaved. Mat. 279 (1985), 3-12. (Russian) MR 814602 (87d:03116)
  • [7] C. G Jockusch, Jr. and R. A. Shore, Pseudo jump operators I: The R. E. case, Trans. Amer. Math. Soc. 275 (1983), 599-609. MR 682720 (84c:03081)
  • [8] P. Odifreddi, Classical recursion theory, North-Holland, Amsterdam, New York, Tokyo and Oxford, 1989. MR 982269 (90d:03072)
  • [9] G. E. Sacks, On the degrees less than 0', Ann. of Math. (2) 77 (1963), 211-231. MR 0146078 (26:3604)
  • [10] R. A. Shore and T. A. Slaman, Working below a low$ _{2}$ recursively enumerable degree (to appear). MR 1038118 (91a:03091)
  • [11] R. I. Soare, Recursively enumerable sets and degrees, Springer-Verlag, Berlin, New York, and London, 1987. MR 882921 (88m:03003)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 03D25

Retrieve articles in all journals with MSC: 03D25


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1992-1105037-0
Article copyright: © Copyright 1992 American Mathematical Society

American Mathematical Society