Multipliers on complemented Banach algebras

Author:
Bohdan J. Tomiuk

Journal:
Proc. Amer. Math. Soc. **115** (1992), 397-404

MSC:
Primary 46H10

DOI:
https://doi.org/10.1090/S0002-9939-1992-1116273-1

MathSciNet review:
1116273

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let be a semisimple right complemented Banach algebra, the left regular representation of , and the left multiplier algebra of . In this paper we are concerned with and its relationship to and . We show that is an annihilator algebra and that it is a closed ideal of . Moreover, and have the same socle. We also show that the left multiplier algebra of a minimal closed ideal of is topologically algebra isomorphic to , the algebra of bounded linear operators on a Hilbert space . Conditions are given under which is right complemented.

**[1]**F. E. Alexander,*On complemented and annihilator algebras*, Glasgow Math. J.**19**(1968), 38-45. MR**0244772 (39:6086)****[2]**-,*Representation theorems for complemented Banach algebras*, Trans. Amer. Math. Soc.**148**(1970), 385-398. MR**0275159 (43:916)****[3]**B. A. Barnes,*Modular annihilator algebras*, Canad. J. Math.**18**(1966), 566-578. MR**0194471 (33:2681)****[4]**-,*Some theorems concerning the continuity of algebra homomorphisms*, Proc. Amer. Math. Soc.**18**(1967), 1035-1038. MR**0220058 (36:3125)****[5]**S. B. Cleveland,*Homomorphisms of non-commutative**-algebras*, Pacific J. Math.**13**(1963), 1097-1109. MR**0158274 (28:1500)****[6]**B. E. Johnson and A. M. Sinclair,*Continuity of derivations and a problem of Kaplansky*, Amer. J. Math.**90**(1968), 1067-1073. MR**0239419 (39:776)****[7]**M. Leinert,*A contribution to Segal algebras*, Manuscripta Math.**10**(1973), 297-306. MR**0324416 (48:2768)****[8]**B. D. Malviya and B. J. Tomiuk,*Multiplier operators on**-algebras*, Proc. Amer. Math. Soc.**31**(1972), 505-510. MR**0305085 (46:4215)****[9]**C. Pearcy and D. Topping,*Sums of small numbers of idempotents*, Michigan Math. J.**14**(1967), 453-465. MR**0218922 (36:2006)****[10]**C. Rickart,*General theory of Banach algebras*, Van Nostrand, New York, 1960. MR**0115101 (22:5903)****[11]**B. J. Tomiuk,*Structure theory of complemented Banach algebras*, Canad. J. Math.**14**(1962), 651-659. MR**0143060 (26:626)****[12]**-,*Isomorphisms of multiplier algebras*, Glasgow Math. J.**28**(1986), 73-77. MR**826630 (88a:46051)****[13]**B. J. Tomiuk and B. Yood,*Topological algebras with dense socle*, J. Funct. Anal.**28**(1978), 254-277. MR**493387 (80f:46052)****[14]**-,*Incomplete normed algebra norms on Banach algebras*, Studia Math.**95**(1989), 119-132. MR**1038499 (91e:46063)****[15]**B. Yood,*Ideals in topological rings*, Canad. J. Math.**16**(1964), 28-45. MR**0158279 (28:1505)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
46H10

Retrieve articles in all journals with MSC: 46H10

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1992-1116273-1

Keywords:
Right complemented Banach algebra,
dual Banach algebra,
left regular representation,
left multiplier,
abstract Segal algebra

Article copyright:
© Copyright 1992
American Mathematical Society