Semiendomorphisms of simple near-rings

Authors:
Kirby C. Smith and Leon van Wyk

Journal:
Proc. Amer. Math. Soc. **115** (1992), 613-627

MSC:
Primary 16Y30

DOI:
https://doi.org/10.1090/S0002-9939-1992-1081701-7

MathSciNet review:
1081701

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let be a finite simple centralizer near-ring that is not an exceptional near-field. A semiendomorphism of is a map ' from into such that , and for all . It is shown that every semiendomorphism of is an automorphism of . A Jordan-endomorphism of is a map ' from into such that , and for all . It is shown that every Jordan-endomorphism of is an automorphism assuming is invertible. The above results imply that every semiendomorphism (Jordan-endomorphism) of a "special" class of semisimple near-rings is an automorphism. These results are in contrast to the ring situation where semiendomorphisms tend to be either an automorphism or an antiautomorphism.

**[1]**G. Ancochea,*On semi-automorphisms of division algebras*, Ann. of Math.**48**(1947), 147-154. MR**0018642 (8:310c)****[2]**E. Artin,*Geometrie algebra*, Interscience, New York, 1957. MR**0082463 (18:553e)****[3]**I. N. Herstein,*Topics in ring theory*, Univ. of Chicago Press, Chicago, 1969. MR**0271135 (42:6018)****[4]**L. K. Hua,*On the automorphisms of an**-field*, Proc. Nat. Acad. Sci. U.S.A.**35**(1949), 386-389. MR**0029886 (10:675d)****[5]**I. Kaplansky,*Semi-automorphisms of rings*, Duke Math. J.**14**(1947), 521-525. MR**0022209 (9:172e)****[6]**C. J. Maxson and K. C. Smith,*The centralizer of a set of group automorphisms*, Comm. Algebra**8**(1980), 211-230. MR**558111 (81c:16048)****[7]**B. McQuarrie,*A non-abelian near-ring in which**implies*, Canad. Math. Bull.**17**(1974), 73-75. MR**0352182 (50:4669)****[8]**J. D. P. Meldrum,*Near-rings and their links with groups*, Res. Notes in Math., vol. 134, Pitman Advanced Publishing Program, London, 1986. MR**854275 (88a:16068)****[9]**G. Pilz,*Near-rings*, North-Holland, Amsterdam, 1983. MR**721171 (85h:16046)****[10]**K. C. Smith,*A generalization of centralizer near-rings*, Proc. Edinburgh. Math. Soc. (2)**28**(1985), 159-165. MR**806748 (87a:16062)****[11]**H. Zassenhaus,*Über endliche Fastkörper*, Abh. Math. Sem. Univ. Hamburg**11**(1935/36), 187-220.

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
16Y30

Retrieve articles in all journals with MSC: 16Y30

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1992-1081701-7

Article copyright:
© Copyright 1992
American Mathematical Society