A generic invariant in a multiplicityfree action
Author:
Chenbo Zhu
Journal:
Proc. Amer. Math. Soc. 115 (1992), 629635
MSC:
Primary 20G05; Secondary 15A72
MathSciNet review:
1086348
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: For a prehomogeneous action of a reductive group on a vector space , we construct a formal power series that is shown to have a nonzero projection to every isotypic component of . When is multiplicityfree, these "Fourier components" of the function provide all the invariants in for some spherical subgroup of . Three interesting examples are presented.
 [BGG]
I. N. Bernstein, I. M. Gelfand, and S. I. Gelfand, Models of representations of Lie groups, Selecta Math. Soviet 1 (1981), 121142.
 [He]
Sigurdur
Helgason, Groups and geometric analysis, Pure and Applied
Mathematics, vol. 113, Academic Press, Inc., Orlando, FL, 1984.
Integral geometry, invariant differential operators, and spherical
functions. MR
754767 (86c:22017)
 [H1]
Roger
Howe, Remarks on classical invariant
theory, Trans. Amer. Math. Soc.
313 (1989), no. 2,
539–570. MR
986027 (90h:22015a), http://dx.doi.org/10.1090/S0002994719890986027X
 [H2]
Roger
Howe, Transcending classical invariant
theory, J. Amer. Math. Soc.
2 (1989), no. 3,
535–552. MR
985172 (90k:22016), http://dx.doi.org/10.1090/S08940347198909851726
 [HU]
Roger
Howe and Tōru
Umeda, The Capelli identity, the double commutant theorem, and
multiplicityfree actions, Math. Ann. 290 (1991),
no. 3, 565–619. MR 1116239
(92j:17004), http://dx.doi.org/10.1007/BF01459261
 [J]
Kenneth
D. Johnson, On a ring of invariant polynomials on a Hermitian
symmetric space, J. Algebra 67 (1980), no. 1,
72–81. MR
595020 (83c:22019), http://dx.doi.org/10.1016/00218693(80)903087
 [Se]
Frank
J. Servedio, Prehomogeneous vector spaces and
varieties, Trans. Amer. Math. Soc. 176 (1973), 421–444. MR 0320173
(47 #8712), http://dx.doi.org/10.1090/S00029947197303201737
 [Sh]
Goro
Shimura, On differential operators attached to certain
representations of classical groups, Invent. Math. 77
(1984), no. 3, 463–488. MR 759261
(86c:11034), http://dx.doi.org/10.1007/BF01388834
 [VK]
E. B. Vinberg and B. N. Kimelfeld, Homogeneous domains in flag manifolds and spherical subgroups of semisimple Lie groups, Functional Anal. Appl. 12 (1978), 1219.
 [W]
Hermann
Weyl, The classical groups, Princeton Landmarks in
Mathematics, Princeton University Press, Princeton, NJ, 1997. Their
invariants and representations; Fifteenth printing; Princeton Paperbacks.
MR
1488158 (98k:01049)
 [Zhe]
D.
P. Želobenko, Compact Lie groups and their
representations, American Mathematical Society, Providence, R.I.,
1973. Translated from the Russian by Israel Program for Scientific
Translations; Translations of Mathematical Monographs, Vol. 40. MR 0473098
(57 #12776b)
 [Zhu]
C. Zhu, Two topics in harmonic analysis on reductive groups, thesis, Yale Univ., 1990.
 [BGG]
 I. N. Bernstein, I. M. Gelfand, and S. I. Gelfand, Models of representations of Lie groups, Selecta Math. Soviet 1 (1981), 121142.
 [He]
 S. Helgason, Groups and geometric analysis, Academic Press, Orlando, FL, 1984. MR 754767 (86c:22017)
 [H1]
 R. Howe, Remarks on classical invariant theory, Trans. Amer. Math. Soc. 313 (1989), 539570. MR 986027 (90h:22015a)
 [H2]
 , Transcending classical invariant theory, J. Amer. Math. Soc. 2 (1989), 535552. MR 985172 (90k:22016)
 [HU]
 R. Howe and T. Umeda, The Capelli identity, the double commutant theorem, and multiplicityfree actions, Math. Ann. (to appear). MR 1116239 (92j:17004)
 [J]
 K. Johnson, On a ring of invariant polynomials on a Hermitian symmetric space, J. Algebra 67 (1980), 7281. MR 595020 (83c:22019)
 [Se]
 F. J. Servedio, Prehomogeneous vector spaces and varieties, Trans. Amer. Math. Soc. 176 (1973), 421444. MR 0320173 (47:8712)
 [Sh]
 G. Shimura, On differential operators attached to certain representations of classical groups, Invent. Math. 77 (1984), 463488. MR 759261 (86c:11034)
 [VK]
 E. B. Vinberg and B. N. Kimelfeld, Homogeneous domains in flag manifolds and spherical subgroups of semisimple Lie groups, Functional Anal. Appl. 12 (1978), 1219.
 [W]
 H. Weyl, The classical groups, Princeton Univ. Press, Princeton, NJ, 1946. MR 1488158 (98k:01049)
 [Zhe]
 D. Zhelobenko, Compact Lie groups and their representations, Transl. Math. Monographs, no. 40, Amer. Math. Soc., Providence, RI, 1973. MR 0473098 (57:12776b)
 [Zhu]
 C. Zhu, Two topics in harmonic analysis on reductive groups, thesis, Yale Univ., 1990.
Similar Articles
Retrieve articles in Proceedings of the American Mathematical Society
with MSC:
20G05,
15A72
Retrieve articles in all journals
with MSC:
20G05,
15A72
Additional Information
DOI:
http://dx.doi.org/10.1090/S00029939199210863484
PII:
S 00029939(1992)10863484
Article copyright:
© Copyright 1992
American Mathematical Society
