Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Integral overrings of two-dimensional going-down domains


Authors: David E. Dobbs and Marco Fontana
Journal: Proc. Amer. Math. Soc. 115 (1992), 655-662
MSC: Primary 13B24; Secondary 13G05
DOI: https://doi.org/10.1090/S0002-9939-1992-1088440-7
MathSciNet review: 1088440
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: It is proved that if $ R$ is a $ 2$-root closed two-dimensional going-down domain with no factor domain of characteristic 2, then each integral overling of $ R$ is a going-down domain. An example is given to show that the "$ 2$-root closed" hypothesis cannot be deleted.


References [Enhancements On Off] (What's this?)

  • [1] D. D. Anderson and M. Zafrullah, Almost Bézout domains, J. Algebra (to appear). MR 1127065 (92g:13026)
  • [2] D. F. Anderson, D. E. Dobbs, and M. Roitman, Root closure in commutative rings, Ann. Sci. Univ. Clermont-Ferrand II Math. 25 (1990), 1-11. MR 1112633 (92f:13006)
  • [3] G. Angermüller, On the root and integral closure of Noetherian domains of dimension one, J. Algebra 83 (1983), 437-441. MR 714254 (85a:13004)
  • [4] G. Angermüller, Root closure, J. Algebra 90 (1984), 189-197. MR 757088 (85m:13004)
  • [5] N. Bourbaki, Commutative algebra, Addison-Wesley, Reading, MA, 1972.
  • [6] D. E. Dobbs, On going-down for simple overrings, II, Comm. Algebra 1 (1974), 439-458. MR 0364225 (51:480)
  • [7] -, Ascent and descent of going-down rings for integral extensions, Bull. Austral. Math. Soc. 15 (1976), 253-264. MR 0427296 (55:330)
  • [8] -, Divided rings and going-down, Pacific J. Math. 67 (1976), 353-363. MR 0424795 (54:12753)
  • [9] -, Coherence, ascent of going-down, and pseudo-valuation domains, Houston J. Math. 4 (1978), 551-567. MR 523613 (80a:13003)
  • [10] D. E. Dobbs and M. Fontana, Locally pseudo-valuation domains, Ann. Mat. Pura Appl. 134 (1983), 147-168. MR 736738 (85j:13034)
  • [11] D. E. Dobbs, M. Fontana, and I. J. Papick, Direct limits and going-down, Comment. Math. Univ. St. Paul. 31 (1982), 129-135. MR 700997 (85b:13006)
  • [12] D. E. Dobbs and I. J. Papick, On going-down for simple overrings, III, Proc. Amer. Math. Soc. 54 (1976), 35-38. MR 0417153 (54:5212)
  • [13] -, Going-down: a survey, Nieuw Arch. Wisk. 26 (1978), 255-291. MR 0491656 (58:10863)
  • [14] M. Fontana, Topologically defined classes of commutative rings, Ann. Mat. Pura Appl. 123 (1980), 331-355. MR 581935 (81j:13001)
  • [15] J. R. Hedstrom and E. G. Houston, Pseudo-valuation domains, Pacific J. Math. 75 (1978), 137-147. MR 0485811 (58:5615a)
  • [16] W. Heinzer and J. Ohm, The finiteness of I when $ R[X]/I$ is $ R$-flat. II, Proc. Amer. Math. Soc. 35 (1972), 1-8. MR 0306177 (46:5304)
  • [17] I. Kaplansky, Commutative rings, rev. ed., Univ. of Chicago Press, Chicago and London, 1974. MR 0345945 (49:10674)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 13B24, 13G05

Retrieve articles in all journals with MSC: 13B24, 13G05


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1992-1088440-7
Article copyright: © Copyright 1992 American Mathematical Society

American Mathematical Society