Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

Remote Access
Green Open Access
Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society
ISSN 1088-6826(online) ISSN 0002-9939(print)


Projections $ P$ on $ C=C[-1,1]$ which interpolate at $ \dim (P(C))$ or more points

Author: Chengmin Yang
Journal: Proc. Amer. Math. Soc. 115 (1992), 669-676
MSC: Primary 46E15; Secondary 41A65
MathSciNet review: 1089415
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ V$ be an $ n$ dimensional subspace of $ C[ - 1,1]$. This paper gives a necessary and sufficient condition for a bounded linear projection $ P$ from $ C[ - 1,1]$ onto $ V$ to have the property that $ Pf$ interpolates $ f$ at $ n$ or more points for any $ f \in C[ - 1,1]$.

References [Enhancements On Off] (What's this?)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 46E15, 41A65

Retrieve articles in all journals with MSC: 46E15, 41A65

Additional Information

PII: S 0002-9939(1992)1089415-4
Keywords: Linear projection, WT measure vector space, interpolation, weak*-topology
Article copyright: © Copyright 1992 American Mathematical Society

Comments: Email Webmaster

© Copyright , American Mathematical Society
Contact Us · Sitemap · Privacy Statement

Connect with us Facebook Twitter Google+ LinkedIn Instagram RSS feeds Blogs YouTube Podcasts Wikipedia