On the retarded Liénard equation

Author:
Bo Zhang

Journal:
Proc. Amer. Math. Soc. **115** (1992), 779-785

MSC:
Primary 34K20; Secondary 34D20, 34D40, 34K15

DOI:
https://doi.org/10.1090/S0002-9939-1992-1094508-1

MathSciNet review:
1094508

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We consider the equation in which are continuous with for is a nonnegative constant, and if for some . Necessary and sufficient conditions are given for boundedness of all solutions and their derivatives. When we give necessary and sufficient conditions for all solutions and their derivatives to converge to zero.

**[1]**T. A. Burton,*On the Equation*, Ann. Mat. Pure Appl.**85**(1970), 277-286. MR**0262595 (41:7201)****[2]**-,*Stability and periodic solutions of ordinary and functional differential equations*, Academic Press, Orlando, FL, 1985. MR**837654 (87f:34001)****[3]**-,*The generalized Liénard equation*, SIAM J. Control Optim.**3**(1965), 223-230. MR**0190462 (32:7874)****[4]**J. R. Graef,*On the generalized Liénard equation with negative damping*, J. Differential Equations**12**(1972), 34-62. MR**0328200 (48:6542)****[5]**J. K. Hale,*Sufficient conditions for stability and instability of autonomous functional differential equations*, J. Differential Equations**1**(1965), 452-482. MR**0183938 (32:1414)****[6]**T. Hara and T. Yoneyama,*On the global center of generalized Liénard equation and its application to stability problems*, Funkcial. Ekvac.**28**(1985), 171-192. MR**816825 (87b:34055)****[7]**Q. C. Huang and X. F. Shi,*Global asymptotic behavior of solutions of second order differential equations*, Acta Math. Sinica**27**(1984), 449-457. MR**767319 (86f:34095)****[8]**J. F. Jiang,*The asymptotic behavior of a class of second order differential equations with application to electrical circuit equations*, J. Math. Anal. Appl.**149**(1990), 26-37. MR**1054791 (91f:34072)****[9]**N. N. Krasovskii,*Stability of motion*, Stanford Univ. Press, Stanford, CA, 1963. MR**0147744 (26:5258)****[10]**N. Minorsky,*Nonlinear oscillation*, Van Nostrand, New York, 1962. MR**0137891 (25:1339)****[11]**A. Somolinos,*Periodic solutions of the sunflower equation*, Quart. Appl. Math.**35**(1978), 465-478. MR**0465265 (57:5170)****[12]**J. Sugie,*On the boundedness of solutions of the generalized Liénard equation without the Signum condition*, Nonlinear Anal.**11**(1987), 1391-1397. MR**917860 (89b:34082)****[13]**-,*On the generalized Liénard equation without the Signum condition*, J. Math. Anal. Appl.**128**(1987), 80-91. MR**915968 (88k:34037)****[14]**G. Villari,*On the qualitative behaviour of solutions of Liénard equation*, J. Differential Equations**67**(1987), 269-277. MR**879697 (88i:34086)****[15]**G. Villari and F. Zanolin,*On a dynamical system in the Liénard plane. Necessary and sufficient conditions for the intersection with the vertical isocline and application*, Funkcial. Ekvac.**33**(1990), 19-38. MR**1065466 (91h:34055)****[16]**T. Yoshizawa,*Asymptotic behavior of solutions of differential equations*, Differential Equations: Qualitative Theory (Szeged, 1984), Colloq. Math. Soc. János Bolyai, vol. 47, North-Holland, Amsterdam, pp. 1141-1172. MR**890596 (89a:34085)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
34K20,
34D20,
34D40,
34K15

Retrieve articles in all journals with MSC: 34K20, 34D20, 34D40, 34K15

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1992-1094508-1

Keywords:
Necessary and sufficient conditions,
boundedness and global asymptotic stability

Article copyright:
© Copyright 1992
American Mathematical Society