On the retarded Liénard equation

Author:
Bo Zhang

Journal:
Proc. Amer. Math. Soc. **115** (1992), 779-785

MSC:
Primary 34K20; Secondary 34D20, 34D40, 34K15

MathSciNet review:
1094508

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We consider the equation in which are continuous with for is a nonnegative constant, and if for some . Necessary and sufficient conditions are given for boundedness of all solutions and their derivatives. When we give necessary and sufficient conditions for all solutions and their derivatives to converge to zero.

**[1]**T. A. Burton,*On the equation 𝑥′′+𝑓(𝑥)ℎ(𝑥′)𝑥′+𝑔(𝑥)=𝑒(𝑡)*, Ann. Mat. Pura Appl. (4)**85**(1970), 277–285. MR**0262595****[2]**T. A. Burton,*Stability and periodic solutions of ordinary and functional-differential equations*, Mathematics in Science and Engineering, vol. 178, Academic Press, Inc., Orlando, FL, 1985. MR**837654****[3]**T. A. Burton,*The generalized Lienard equation*, J. Soc. Indust. Appl. Math. Ser. A Control**3**(1965), 223–230. MR**0190462****[4]**John R. Graef,*On the generalized Liénard equation with negative damping*, J. Differential Equations**12**(1972), 34–62. MR**0328200****[5]**Jack K. Hale,*Sufficient conditions for stability and instability of autonomous functional-differential equations*, J. Differential Equations**1**(1965), 452–482. MR**0183938****[6]**Tadayuki Hara and Toshiaki Yoneyama,*On the global center of generalized Liénard equation and its application to stability problems*, Funkcial. Ekvac.**28**(1985), no. 2, 171–192. MR**816825****[7]**Qi Chang Huang and Xi Fu Shi,*The global asymptotic behavior of the solutions of a class of systems of second-order ordinary differential equations*, Acta Math. Sinica**27**(1984), no. 4, 449–457 (Chinese). MR**767319****[8]**Ji Fa Jiang,*The asymptotic behavior of a class of second-order differential equations with applications to electrical circuit equations*, J. Math. Anal. Appl.**149**(1990), no. 1, 26–37. MR**1054791**, 10.1016/0022-247X(90)90283-L**[9]**N. N. Krasovskiĭ,*Stability of motion. Applications of Lyapunov’s second method to differential systems and equations with delay*, Translated by J. L. Brenner, Stanford University Press, Stanford, Calif., 1963. MR**0147744****[10]**Nicolas Minorsky,*Nonlinear oscillations*, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto-London-New York, 1962. MR**0137891****[11]**Alfredo S. Somolinos,*Periodic solutions of the sunflower equation: 𝑥+(𝑎/𝑟)𝑥+(𝑏/𝑟)sin𝑥(𝑡-𝑟)=0*, Quart. Appl. Math.**35**(1977/78), no. 4, 465–478. MR**0465265****[12]**Jitsuro Sugie,*On the boundedness of solutions of the generalized Liénard equation without the signum condition*, Nonlinear Anal.**11**(1987), no. 12, 1391–1397. MR**917860**, 10.1016/0362-546X(87)90091-5**[13]**J. Sugie,*On the generalized Liénard equation without the signum condition*, J. Math. Anal. Appl.**128**(1987), no. 1, 80–91. MR**915968**, 10.1016/0022-247X(87)90215-0**[14]**Gabriele Villari,*On the qualitative behaviour of solutions of Liénard equation*, J. Differential Equations**67**(1987), no. 2, 269–277. MR**879697**, 10.1016/0022-0396(87)90150-1**[15]**Gabriele Villari and Fabio Zanolin,*On a dynamical system in the Liénard plane. Necessary and sufficient conditions for the intersection with the vertical isocline and applications*, Funkcial. Ekvac.**33**(1990), no. 1, 19–38. MR**1065466****[16]**T. Yoshizawa,*Asymptotic behaviors of solutions of differential equations*, Differential equations: qualitative theory, Vol. I, II (Szeged, 1984), Colloq. Math. Soc. János Bolyai, vol. 47, North-Holland, Amsterdam, 1987, pp. 1141–1164. MR**890596**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
34K20,
34D20,
34D40,
34K15

Retrieve articles in all journals with MSC: 34K20, 34D20, 34D40, 34K15

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1992-1094508-1

Keywords:
Necessary and sufficient conditions,
boundedness and global asymptotic stability

Article copyright:
© Copyright 1992
American Mathematical Society