Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

Dependence of arithmetic functions and Dirichlet series


Author: Vichian Laohakosol
Journal: Proc. Amer. Math. Soc. 115 (1992), 637-645
MSC: Primary 11J85; Secondary 11J82, 30B50, 42A55
MathSciNet review: 1100659
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Simpler proofs of results about algebraic dependence are given in the domain of arithmetic functions under addition and convolution and in the domain of Dirichlet series. Better measures of differential transcendence are derived in the latter case.


References [Enhancements On Off] (What's this?)

  • [1] Tom M. Apostol, Introduction to analytic number theory, Springer-Verlag, New York-Heidelberg, 1976. Undergraduate Texts in Mathematics. MR 0434929
  • [2] Richard Bellman and Harold N. Shapiro, The algebraic independence of arithmetic functions. I. Multiplicative functions, Duke Math. J. 15 (1948), 229–235. MR 0024467
  • [3] L. Carlitz, Independence of arithmetic functions, Duke Math. J. 19 (1952), 65–70. MR 0046384
  • [4] E. D. Cashwell and C. J. Everett, The ring of number-theoretic functions, Pacific J. Math. 9 (1959), 975–985. MR 0108510
  • [5] A. O. Gel′fond and Yu. V. Linnik, Elementary methods in the analytic theory of numbers, Translated from the Russian by D. E. Brown. Translation edited by I. N. Sneddon. International Series of Monographs in Pure and Applied Mathematics, Vol. 92, Pergamon Press, Oxford-New York-Toronto, Ont., 1966. MR 0201368
  • [6] Vichian Laohakosol, Kannika Kongsakorn, and Utsanee Leerawat, Some arithmetic functions algebraically independent with respect to convolution, Soochow J. Math. 15 (1989), no. 2, 171–178. MR 1045159
  • [7] -, Algebraic independence test of arithmetic functions using Jacobians, J. Sci. Soc. Thailand 15 (1989), 133-138.
  • [8] Paul J. McCarthy, Introduction to arithmetical functions, Universitext, Springer-Verlag, New York, 1986. MR 815514
  • [9] Alexander Ostrowski, Über Dirichletsche Reihen und algebraische Differentialgleichungen, Math. Z. 8 (1920), no. 3-4, 241–298 (German). MR 1544442, 10.1007/BF01206530
  • [10] G. Pólya and G. Szegö, Problems and theorems in analysis, vol. II, Springer-Verlag, Berlin, 1976.
  • [11] J. Popken, Algebraic dependence of arithmetic functions, Nederl. Akad. Wetensch. Proc. Ser. A 65 = Indag. Math. 24 (1962), 155–168. MR 0140504
  • [12] J. Popken, On multiplicative arithmetic functions, Studies in mathematical analysis and related topics, Stanford Univ. Press, Stanford, Calif, 1962, pp. 285–293. MR 0143752
  • [13] -, Note on a generalization of a problem of Hilbert, Proc. Kon. Ned. Akad. Wetensch. 68 (1965), 178-181.
  • [14] J. Popken, Algebraic independence of certain zêta functions, Nederl. Akad. Wetensch. Proc. Ser. A 69 = Indag. Math. 28 (1966), 1–5. MR 0193072
  • [15] J. Popken, A measure for the differential-transcendence of the zeta-function of Riemann, Number Theory and Analysis (Papers in Honor of Edmund Landau), Plenum, New York, 1969, pp. 245–255. MR 0258769
  • [16] Harold N. Shapiro, On the convolution ring of arithmetic functions, Comm. Pure Appl. Math. 25 (1972), 287–336. MR 0294276
  • [17] Harold N. Shapiro and Gerson H. Sparer, On algebraic independence of Dirichlet series, Comm. Pure Appl. Math. 39 (1986), no. 6, 695–745. MR 859271, 10.1002/cpa.3160390602
  • [18] L. I. Wade, Algebraic independence of certain arithmetic functions, Duke Math. J. 15 (1948), 237. MR 0024468

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 11J85, 11J82, 30B50, 42A55

Retrieve articles in all journals with MSC: 11J85, 11J82, 30B50, 42A55


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1992-1100659-5
Article copyright: © Copyright 1992 American Mathematical Society