Skip to Main Content

Proceedings of the American Mathematical Society

Published by the American Mathematical Society since 1950, Proceedings of the American Mathematical Society is devoted to shorter research articles in all areas of pure and applied mathematics.

ISSN 1088-6826 (online) ISSN 0002-9939 (print)

The 2020 MCQ for Proceedings of the American Mathematical Society is 0.85.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Dependence of arithmetic functions and Dirichlet series
HTML articles powered by AMS MathViewer

by Vichian Laohakosol PDF
Proc. Amer. Math. Soc. 115 (1992), 637-645 Request permission

Abstract:

Simpler proofs of results about algebraic dependence are given in the domain of arithmetic functions under addition and convolution and in the domain of Dirichlet series. Better measures of differential transcendence are derived in the latter case.
References
  • Tom M. Apostol, Introduction to analytic number theory, Undergraduate Texts in Mathematics, Springer-Verlag, New York-Heidelberg, 1976. MR 0434929
  • Richard Bellman and Harold N. Shapiro, The algebraic independence of arithmetic functions. I. Multiplicative functions, Duke Math. J. 15 (1948), 229–235. MR 24467
  • L. Carlitz, Independence of arithmetic functions, Duke Math. J. 19 (1952), 65–70. MR 46384
  • E. D. Cashwell and C. J. Everett, The ring of number-theoretic functions, Pacific J. Math. 9 (1959), 975–985. MR 108510
  • A. O. Gel′fond and Yu. V. Linnik, Elementary methods in the analytic theory of numbers, International Series of Monographs in Pure and Applied Mathematics, Vol. 92, Pergamon Press, Oxford-New York-Toronto, Ont., 1966. Translated from the Russian by D. E. Brown; Translation edited by I. N. Sneddon. MR 0201368
  • Vichian Laohakosol, Kannika Kongsakorn, and Utsanee Leerawat, Some arithmetic functions algebraically independent with respect to convolution, Soochow J. Math. 15 (1989), no. 2, 171–178. MR 1045159
  • —, Algebraic independence test of arithmetic functions using Jacobians, J. Sci. Soc. Thailand 15 (1989), 133-138.
  • Paul J. McCarthy, Introduction to arithmetical functions, Universitext, Springer-Verlag, New York, 1986. MR 815514, DOI 10.1007/978-1-4613-8620-9
  • Alexander Ostrowski, Über Dirichletsche Reihen und algebraische Differentialgleichungen, Math. Z. 8 (1920), no. 3-4, 241–298 (German). MR 1544442, DOI 10.1007/BF01206530
  • G. Pólya and G. Szegö, Problems and theorems in analysis, vol. II, Springer-Verlag, Berlin, 1976.
  • J. Popken, Algebraic dependence of arithmetic functions, Nederl. Akad. Wetensch. Proc. Ser. A 65 = Indag. Math. 24 (1962), 155–168. MR 0140504
  • J. Popken, On multiplicative arithmetic functions, Studies in mathematical analysis and related topics, Stanford Univ. Press, Stanford, Calif., 1962, pp. 285–293. MR 0143752
  • —, Note on a generalization of a problem of Hilbert, Proc. Kon. Ned. Akad. Wetensch. 68 (1965), 178-181.
  • J. Popken, Algebraic independence of certain zêta functions, Nederl. Akad. Wetensch. Proc. Ser. A 69 = Indag. Math. 28 (1966), 1–5. MR 0193072
  • J. Popken, A measure for the differential-transcendence of the zeta-function of Riemann, Number Theory and Analysis (Papers in Honor of Edmund Landau), Plenum, New York, 1969, pp. 245–255. MR 0258769
  • Harold N. Shapiro, On the convolution ring of arithmetic functions, Comm. Pure Appl. Math. 25 (1972), 287–336. MR 294276, DOI 10.1002/cpa.3160250306
  • Harold N. Shapiro and Gerson H. Sparer, On algebraic independence of Dirichlet series, Comm. Pure Appl. Math. 39 (1986), no. 6, 695–745. MR 859271, DOI 10.1002/cpa.3160390602
  • L. I. Wade, Algebraic independence of certain arithmetic functions, Duke Math. J. 15 (1948), 237. MR 24468
Similar Articles
Additional Information
  • © Copyright 1992 American Mathematical Society
  • Journal: Proc. Amer. Math. Soc. 115 (1992), 637-645
  • MSC: Primary 11J85; Secondary 11J82, 30B50, 42A55
  • DOI: https://doi.org/10.1090/S0002-9939-1992-1100659-5
  • MathSciNet review: 1100659