Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On the weighted $ L^p$-integrability of nonnegative $ \mathcal{M}$-superharmonic functions


Author: Shi Ying Zhao
Journal: Proc. Amer. Math. Soc. 115 (1992), 677-685
MSC: Primary 31C05; Secondary 32F05
DOI: https://doi.org/10.1090/S0002-9939-1992-1101993-5
MathSciNet review: 1101993
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A weighted $ {L^p}$-integrability of nonnegative $ \mathcal{M}$-superharmonic functions in the unit ball of $ {\mathbb{C}^n}$ is studied in this paper. Our result is analogous to an earlier result of Armitage (J. London Math. Soc. (2) 4 (1971), 363-373) concerning the $ {L^p}$-integrability of superharmonic functions for balls in $ {\mathbb{R}^d}$. An example is given to show the sharpness of the result. Also, the weighted $ {L^p}$-integrability of the invariant Green's function for the unit ball of $ {\mathbb{C}^n}$ is obtained.


References [Enhancements On Off] (What's this?)

  • [1 D] H. Armitage, Further results on the global integrability of superharmonic functions, J. London Math. Soc. (2) 6 (1972), 109-121. MR 0313524 (47:2078)
  • [2] -, On the global integrability of superharmonic functions in balls, J. London Math. Soc. (2) 4 (1971), 363-373. MR 0291484 (45:575)
  • [3] J. A. Cima and C. S. Stanton, Admissible limits of $ \mathcal{M}$-subharmonic functions, Michigan Math. J. 32 (1985), 211-220. MR 783575 (86e:31004)
  • [4] E. B. Fabes and D. W. Stroock, The $ {L^p}$-integrability of Green's functions and fundamental solutions for elliptic and parabolic equations, Duke Math. J. 51 (1984), 997-1016. MR 771392 (86g:35057)
  • [5] K. T. Hahn and D. Singman, Boundary behavior of invariant Green's potentials on the unit ball in $ {\mathbb{C}^n}$, Trans. Amer. Math. Soc. 309 (1988), 339-354. MR 957075 (89j:32008)
  • [6] L. L. Helms, Introduction to potential theory, Wiley-Interscience, New York, 1969. MR 0261018 (41:5638)
  • [7] W. Rudin, Function theory in the unit ball of $ {\mathbb{C}^n}$, Springer, New York, 1980. MR 601594 (82i:32002)
  • [8] M. Stoll, Rate of growth of $ p$th means of invariant potentials in the unit ball of $ {\mathbb{C}^n}$, J. Math. Anal. Appl. 143 (1989), 480-499. MR 1022549 (90j:32037)
  • [9] D. Ullrich, Radial limits of $ \mathcal{M}$-subharmonic functions, Trans. Amer. Math. Soc. 292 (1985), 501-518. MR 808734 (87a:31007)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 31C05, 32F05

Retrieve articles in all journals with MSC: 31C05, 32F05


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1992-1101993-5
Keywords: $ \mathcal{M}$-superharmonic functions, unit ball of $ {\mathbb{C}^n}$, integrability
Article copyright: © Copyright 1992 American Mathematical Society

American Mathematical Society