Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Ahlfors functions on Denjoy domains


Author: Akira Yamada
Journal: Proc. Amer. Math. Soc. 115 (1992), 757-763
MSC: Primary 30D50; Secondary 30C85
DOI: https://doi.org/10.1090/S0002-9939-1992-1116275-5
MathSciNet review: 1116275
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ \Delta $ be the open unit disc. We give a characterization of a set that is the complement in $ \Delta $ of the image of the Ahlfors function for some maximal Denjoy domain and $ \infty $. As a corollary, we show by an example that there exists such a set with positive logarithmic capacity.


References [Enhancements On Off] (What's this?)

  • [1] S. D. Fisher, On Schwarz's lemma and inner functions, Trans. Amer. Math. Soc. 138 (1969), 229-240. MR 0240302 (39:1651)
  • [2] -, The moduli of extremal functions, Michigan Math. J. 19 (1972), 179-183. MR 0306506 (46:5632)
  • [3] T. Gamelin, Lectures on $ {H^\infty }(D)$, Notas Mat., La Plata, Argentina, Vol. 21, 1972.
  • [4] J. B. Garnett, Analytic capacity and measure, Springer-Verlag, Berlin, Heidelberg, and New York, 1972. MR 0454006 (56:12257)
  • [5] -, Bounded analytic functions, Academic Press, New York, 1981. MR 628971 (83g:30037)
  • [6] S. Ya. Havinson, Analytic capacity of sets, joint nontriviality of various classes of analytic functions and the Schwarz lemma in arbitrary domains, Amer. Math. Soc. Transl. Ser. 2, vol. 43, Amer. Math. Soc., Providence, RI, 1964, pp. 215-266.
  • [7] C. D. Minda, The image ofthe Ahlfors function, Proc. Amer. Math. Soc. 83 (1981), 751-756. MR 630049 (82m:30035)
  • [8] Ch. Pommerenke, Über die analytische Kapazität, Arch. Math. (Basel) 11 (1960), 270-277. MR 0114924 (22:5740c)
  • [9] E. Roding, Über die Wertannahme der Ahlfors funktion in beliebigen Gebieten, Manuscripta Math. 20 (1977), 133-140. MR 0437740 (55:10663)
  • [10] W. Rudin, Some theorems on bounded analytic functions, Trans. Amer. Math. Soc. 78 (1955), 333-342. MR 0067192 (16:685b)
  • [11] L. Sario and K. Oikawa, Capacity functions, Grundlehren Math. Wiss., vol. 149, Springer-Verlag, Berlin, Heidelberg, and New York, 1969. MR 0254232 (40:7441)
  • [12] M. Tsuji, Potential theory in modern function theory, Maruzen, Tokyo, 1959. MR 0114894 (22:5712)
  • [13] A. Yamada, A remark on the image of the Ahlfors function, Proc. Amer. Math. Soc. 88 (1983), 639-642. MR 702291 (85a:30039)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 30D50, 30C85

Retrieve articles in all journals with MSC: 30D50, 30C85


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1992-1116275-5
Keywords: Ahlfors function, analytic capacity, logarithmic capacity, Denjoy domain
Article copyright: © Copyright 1992 American Mathematical Society

American Mathematical Society