Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Toda flows and isospectral manifolds


Author: Leonid Faybusovich
Journal: Proc. Amer. Math. Soc. 115 (1992), 837-847
MSC: Primary 58F09; Secondary 17B20, 35Q58, 58F07
DOI: https://doi.org/10.1090/S0002-9939-1992-1128727-2
MathSciNet review: 1128727
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We apply Bott's method to the calculation of Betti numbers of isospectral manifolds. Necessary properties of Toda flows, including a description of the phase portrait, are given with complete proofs.


References [Enhancements On Off] (What's this?)

  • [1] M. F. Atiyah and R. Bott, Yang-Mills equations over Riemann surfaces, Philos. Trans. Roy. Soc. London Ser. A 308 (1982), 523-615. MR 702806 (85k:14006)
  • [2] R. Bott, An application of the Morse theory to the topology of compact Lie groups, Bull. Soc. Math. France 84 (1956), 251-282. MR 0087035 (19:291a)
  • [3] -, Representation Theory of Lie groups, Cambridge University Press, Cambridge, 1979, pp. 65-90. MR 568880 (81j:22001)
  • [4] M. W. Davis, Some aspherical manifolds Duke Math. J. 55 (1987), 105-139. MR 883666 (88j:57044)
  • [5] L. E. Faybusovich, QR -type factorizations, the Yang-Baxter equation and an eigenvalue problem of control theory, Linear Algebra Appl. (1989), 122-124, 943-971. MR 1020016 (90i:93063)
  • [6] -, QR-algorithm and generalized Toda flows, Ukrain. Mat. Zh. 41 (1989), 944-952. MR 1024291 (91d:58091)
  • [7] -, Generalized Toda flows, the Riccati equations on Grassmannian and the QR-algorithm, Funct. Anal. Appl. 21 (1987), 166-168.
  • [8] D. Fried, The cohomology of an isospectral flow, Proc. Amer. Math. Soc. 98 (1986), 363-368. MR 854048 (88b:58110)
  • [9] I. M. Gelfand and V. V. Serganova, Combinatorial geometries and torus strata on homogeneous compact manifolds, Uspekhi Mat. Nauk 42 (1987), 107-134. MR 898623 (89g:32049)
  • [10] R. Goodman and N. R. Wallach, Classical and quantum mechanical systems of Toda lattice type II, Comm. Math. Phys. 94 (1984), 177-217. MR 761793 (86b:58040)
  • [11] S. Helgason, Differential geometry, Lie groups and symmetric spaces, Academic Press, New York, 1978. MR 514561 (80k:53081)
  • [12] R. Hermann, Toda lattices, cosymplectic manifolds, kinds, Part B, Interdisciplinary Math., vol. 18, Math. Sci. Press, Brookline, MA, 1978.
  • [13] B. Kostant, The solution to a generalized Toda lattice and representation theory, Adv. in Math. 34 (1979), 195-338. MR 550790 (82f:58045)
  • [14] J. Moser, Three integrable hamiltonian systems connected with isospectral deformations, Adv. in Math. 16 (1975), 197-220. MR 0375869 (51:12058)
  • [15] M. Shayman and F. De Mari, Hessenberg varieties and generalized Eulerian numbers for semisimple Lie groups: The classical cases, preprint 1988.
  • [16] W. Symes, The QR-algorithm and scattering for the finite nonperiodic Toda lattice, Phys. D 4 (1982), 278-280. MR 653781 (83h:58053)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 58F09, 17B20, 35Q58, 58F07

Retrieve articles in all journals with MSC: 58F09, 17B20, 35Q58, 58F07


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1992-1128727-2
Article copyright: © Copyright 1992 American Mathematical Society

American Mathematical Society