REFLEXIVITY OF COMMUTATIVE SUBSPACE LATTICES

RICHARD HAYDON

(Communicated by Palle E. T. Jorgensen)

ABSTRACT. A short proof is given of Arveson’s reflexivity theorem for strongly closed commutative subspace lattices.

When \(\mathcal{L} \) is a lattice of commuting self-adjoint projections on a Hilbert space \(\mathcal{H} \), one can form the algebra \(\text{Alg}\mathcal{L} \) of all \(T \in \mathcal{B}(\mathcal{H}) \) for which \(TP = PTP \) for all \(P \in \mathcal{L} \). Given a subalgebra \(\mathcal{A} \) of \(\mathcal{B}(\mathcal{H}) \) one can form the lattice \(\text{Lat}\mathcal{A} \) consisting of all self-adjoint projections \(P \) such that \(TP = PTP \) whenever \(T \in \mathcal{A} \). It is a theorem of W. B. Arveson [1] that if \(\mathcal{L} \) is closed in the strong operator topology, then \(\mathcal{L} \) is reflexive, that is to say that \(\mathcal{L} = \text{Lat}\text{Alg}\mathcal{L} \). In this note we shall give a short proof of this result. Our approach avoids topological measure theory and disintegration of measures, though we do use, in a different guise, the class \(\mathcal{A} \) of “pseudo-integral” operators that is the key to Arveson’s original proof. Other proofs of the theorem have been given by K. R. Davidson [2] and by V. S. Shul’mant [3].

Let \((\Omega, \mathcal{F}, \mu)\) be a finite measure space. We shall write \(A(\mu) \) for the algebra of all linear operators \(T : L^2(\mu) \to L^2(\mu) \) which are bounded from the \(L^1 \)-norm to the \(L^1 \)-norm and from the \(L^\infty \)-norm to the \(L^\infty \)-norm. For \(T \in A(\mu) \) we define \(\|T\|_A = \max\{\|T : L^1 \to L^1\|, \|T : L^\infty \to L^\infty\|\} \). By interpolation, the norm of \(T \) in \(\mathcal{B}(L^2(\mu)) \) is less than or equal to \(\|T\|_A \), so that the unit ball of \(\| \cdot \|_A \) is a subset of the unit ball of \(\mathcal{B}(L^2(\mu)) \) for the operator norm. In fact, it a closed subset for the weak operator topology (and hence compact for that topology) since \(\|T\|_A \leq 1 \) if and only if \((Tf | g) \leq 1 \) whenever the elements \(f, g \) of \(L^2(\mu) \) satisfy \(\|f\|_1 \leq 1 \) and \(\|g\|_\infty \leq 1 \) or \(\|f\|_\infty \leq 1 \) and \(\|g\|_1 \leq 1 \).

When \(\mathcal{L} \) is a sublattice of the \(\sigma \)-algebra \(\mathcal{F} \) the projections \(P_L : f \mapsto f1_L \) \((L \in \mathcal{L})\) form a lattice in \(\mathcal{B}(L^2(\mu)) \). We abuse notation by writing \(\text{Alg}\mathcal{L} \) for \(\text{Alg}\{P_L : L \in \mathcal{L}\} \).

Theorem. Let \((\Omega, \mathcal{F}, \mu)\) be a finite measure space and let \(\mathcal{L} \) be a sublattice of \(\mathcal{F} \). For any \(F \in \mathcal{F} \)

\[
\inf_{L \in \mathcal{L}} \mu(F \triangle L) = \max\{\langle T1_F | 1_{\Omega \setminus F} \rangle : T \in A(\mu) \cap \text{Alg}\mathcal{L}, \|T\|_A = 1\}.
\]

Received by the editors January 29, 1991.

1980 Mathematics Subject Classification (1985 Revision). Primary 47D25.
Proof. If \(L \in \mathcal{L} \) and \(T \in \mathcal{A}(\mu) \cap \text{Alg}\mathcal{L} \), then
\[
(T|_{\mathcal{L}|_{\Omega \setminus F}} \leq (T|_{\mathcal{L} \cap L} \mid 1_{\Omega \setminus (L \cup F)}) + (T|_{\mathcal{L} \setminus L} \mid 1_{\Omega \setminus F})
\]
\[
\leq 0 + \|T : L^\infty \rightarrow L^\infty\| \mu(L \setminus F) + \|T : L^1 \rightarrow L^1\| \mu(F \setminus L)
\]
so that one inequality (\(\geq \)) is easily established. To establish the other, we start with the case where \(\mathcal{L} \) is a finite lattice.

Lemma. Let \((\Omega, \mathcal{F}, \mu)\) be a finite measure space and let \(\mathcal{L} \) be a finite sublattice of \(\mathcal{F} \). For any \(F \in \mathcal{F} \) there exist \(L \in \mathcal{L} \) and \(T \in \text{Alg}\mathcal{L} \) with \(\|T\|_A = 1 \) such that
\[
\mu(F \triangle L) = (T|_{\mathcal{L}|_{\Omega \setminus F}}).
\]

Proof. Let \(\mathcal{S} \) be the algebra generated by \(\mathcal{L} \cup \{F\} \) and let \(A_1, \ldots, A_m \) be the atoms of \(\mathcal{S} \) that are contained in \(F \), \(B_1, \ldots, B_n \) the atoms that are disjoint from \(F \). Let \(G \) be the set of pairs \((i, j)\) such that there is no \(L \in \mathcal{S} \) with \(A_i \subseteq L, B_j \cap L = \emptyset \). If \(x = (x_{i,j})_{(i,j) \in G} \) is a family of positive real numbers then we may define an operator \(T_x \) in \(\text{Alg}\mathcal{L} \) by
\[
T_x f = \sum_{(i,j) \in G} \frac{x_{i,j}}{\mu(A_i)\mu(B_j)} (f \mid 1_{A_i}) 1_{B_j}.
\]
We easily calculate the norms
\[
\|T_x : L^1 \rightarrow L^1\| = \max_i \sum_j \frac{x_{i,j}}{\mu(A_i)},
\]
\[
\|T_x : L^\infty \rightarrow L^\infty\| = \max_j \sum_i \frac{x_{i,j}}{\mu(B_j)}
\]
as well as the quantity
\[
(T_x|_{\mathcal{L}|_{\Omega \setminus F}} = \sum_{(i,j) \in G} x_{i,j},
\]

Let \(\delta \) be the maximum of this quantity for \(x \) as above and \(\|T_x\|_A \leq 1 \). We shall have proved the lemma if we find an element \(L \in \mathcal{L} \) with \(\mu(F \triangle L) \leq \delta \).

Now \(\delta \) is thus the solution of the following linear programming problem: Maximize \(\sum_{(i,j) \in G} x_{i,j} \) subject to \(x_{i,j} \geq 0, \sum_j x_{i,j} \leq \alpha_i \) for all \(i \), and \(\sum_i x_{i,j} \leq \beta_j \) for all \(j \), where \(\alpha_i = \mu(A_i) \) and \(\beta_j = \mu(B_j) \). This may be regarded as a network-flow problem: we consider a directed graph whose nodes are \(A_1, A_2, \ldots, A_m, B_1, B_2, \ldots, B_n \) together with a “source” \(S \) and a “sink” \(T \). For each \(i \) there is a channel from \(S \) to \(A_i \) with maximum capacity \(\alpha_i \), for each \(j \) there is a channel from \(B_j \) to \(T \) with capacity \(\beta_j \), and there is a channel of infinite capacity from \(A_i \) to \(B_j \) whenever \((i, j) \in G \). Our problem is to find the maximal flow through this network. By the Min-Cut Max-Flow Theorem this maximal flow equals
\[
\min_C \sum_{c \in C} \text{capacity of } c,
\]
where the minimum is taken over sets \(C \) of channels such that \(S \) is separated from \(T \) if all channels in \(C \) are removed from the network. Evidently, we
shall not achieve this minimum if we remove a channel of infinite capacity so that the minimizing \(C \) will consist of the channels \(SA_i \) for \(i \) in a certain set \(I \), and the \(B_jT \) for \(j \) in some \(J \).

We have established the existence of \(I \) and \(J \) such that

\[
\sum_{i \in I} \alpha_i + \sum_{j \in J} \beta_j = \delta
\]

and such that for every \((i, j) \in G\) at least one of \(i \in I, j \in J \) is true. By the definition of \(G \) there exists, whenever \(i \notin I \) and \(j \notin J \), an element \(L_{i,j} \) of \(\mathcal{L} \) with \(A_i \subseteq L_{i,j} \) and \(B_j \cap L_{i,j} = \emptyset \). Since \(\mathcal{L} \) is a lattice the set

\[
L = \bigcap_{j \notin J} \bigcup_{i \notin I} L_{i,j}
\]

is in \(\mathcal{L} \). Also \(A_i \subseteq L \) whenever \(i \notin I \) and \(B_j \cap L = \emptyset \) whenever \(j \notin J \), so that

\[
\mu(F \Delta L) \leq \sum_{i \in I} \mu(A_i) + \sum_{j \in J} \mu(B_j) = \delta.
\]

We can now resume the proof of the theorem. Let \(\delta = \inf\{\mu(F \Delta L) : L \in \mathcal{L}\} \) and let \(K \) be the set of all \(T \in \mathbf{A}(\mu) \) such that \(\|T\|_A \leq 1 \) and \(\langle T1_F, 1_{\Omega \setminus F} \rangle \geq \delta \). This set is compact in the weak operator topology. If \(\mathcal{L} \) is a finite sublattice of \(\mathcal{L} \), then

\[
K \cap \text{Alg} \mathcal{L}' = \{T \in K : (Tf | g) = 0 \text{ whenever there exists } L \in \mathcal{L} \text{ such that supp } f \subseteq L \text{ and supp } g \subseteq \Omega \setminus L\}
\]

is closed in the weak operator topology, and is nonempty by the lemma. By compactness we deduce that \(K \cap \text{Alg} \mathcal{L} \) is nonempty, which is what we wanted to prove.

Corollary. Let \(\mathcal{H} \) be a Hilbert space and let \(\mathcal{L} \) be a strongly closed lattice of commuting selfadjoint projections on \(\mathcal{H} \). Then \(\text{Lat Alg} \mathcal{L} = \mathcal{L} \).

Proof. The reduction of the problem on a general Hilbert space to the measure-theoretic version that we have just been looking at is rather standard. Let \(Q \) be a selfadjoint projection that is not in \(\mathcal{L} \); we have to show that \(Q \) is not in \(\text{Lat Alg} \mathcal{L} \). Let \(\mathcal{M} \) be a maximal abelian selfadjoint subalgebra of \(\mathcal{B}(_{\mathcal{H}}) \) containing the lattice \(\mathcal{L} \); then \(\text{Alg} \mathcal{L} \supseteq \mathcal{M} \), so that \(\text{Lat Alg} \mathcal{L} \subseteq \text{Lat} \mathcal{M} \). It is known that \(\text{Lat} \mathcal{M} \subseteq \mathcal{M} \) so that we can certainly assume that \(Q \in \mathcal{M} \). Since \(\mathcal{L} \) is strongly closed, there exist \(f_1, \ldots, f_m \in \mathcal{H} \) such that

\[
\max_{i \leq m} \|(P - Q)f_i\| \geq 1
\]

for all \(P \in \mathcal{L} \). Let \(\mathcal{H}_0 \) be the closed subspace generated by \(\mathcal{M}\{f_1, \ldots, f_m\} \).

The orthogonal projection \(P_0 \) of \(\mathcal{H} \) onto \(\mathcal{H}_0 \) is in \(\mathcal{M} \) and \(\mathcal{M} = \mathcal{M}|_{\mathcal{H}_0} \) is a maximal abelian selfadjoint subalgebra of \(\mathcal{B}(_{\mathcal{H}_0}) \). We can regard \(\mathcal{H}_0 \) as \(L^2(\mu) \) and identify \(\mathcal{M} \) with \(L^\infty(\mu) \) for a suitable finite measure \(\mu \). The lattice \(\mathcal{L}|_{\mathcal{H}_0} \) of idempotents in \(\mathcal{M}_0 \) has the form \(\{PL : L \in \mathcal{L}_0\} \) for some sublattice \(\mathcal{L}_0 \) of \(\mathcal{F} \). The restriction to \(\mathcal{H}_0 \) of \(Q \) is \(P_F \) for some \(F \in \mathcal{F} \). The existence in \(\mathcal{H}_0 = L^2(\mu) \) of the elements \(f_1, \ldots, f_m \), implies that there is some \(\delta > 0 \) such that \(\mu(F \Delta L) \geq \delta \) for all \(L \in \mathcal{L}_0 \). The theorem gives some \(T_0 \in \mathcal{B}(_{\mathcal{H}_0}) \) such that \(T_0PL = PLT_0P \) for all \(L \in \mathcal{L}_0 \) but \(T_0P_F \neq P_F T_0P_F \). If we define \(T \in \mathcal{B}(_{\mathcal{H}}) \) by \(T = T_0P_0 \), then \(T \in \text{Alg} \mathcal{L} \) but \(TQ \neq QTQ \).
References

Brasenose College, Oxford, OX1 4AJ, United Kingdom