Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Reflexivity of commutative subspace lattices

Author: Richard Haydon
Journal: Proc. Amer. Math. Soc. 115 (1992), 1057-1060
MSC: Primary 47D25; Secondary 47A15
MathSciNet review: 1087464
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A short proof is given of Arveson's reflexivity theorem for strongly closed commutative subspace lattices.

References [Enhancements On Off] (What's this?)

  • [1] W. B. Arveson, Operator algebras and invariant subspaces, Ann. of Math. (2) 100 (1974), 433-532. MR 0365167 (51:1420)
  • [2] K. R. Davidson, Commutative subspace lattices, Indiana Univ. Math. J. 27 (1978), 479-490. MR 0482264 (58:2340)
  • [3] V. S. Shulman, Projection lattices in Hilbert space, Functional Anal. Appl. 23 (1990), 158-159; translation of Funkcional. Anal. i Priložen. 23 (1989), 86-89. MR 1011372 (90h:47084)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 47D25, 47A15

Retrieve articles in all journals with MSC: 47D25, 47A15

Additional Information

Article copyright: © Copyright 1992 American Mathematical Society

American Mathematical Society