Reflexivity of commutative subspace lattices
Author:
Richard Haydon
Journal:
Proc. Amer. Math. Soc. 115 (1992), 1057-1060
MSC:
Primary 47D25; Secondary 47A15
DOI:
https://doi.org/10.1090/S0002-9939-1992-1087464-3
MathSciNet review:
1087464
Full-text PDF
Abstract | References | Similar Articles | Additional Information
Abstract: A short proof is given of Arveson's reflexivity theorem for strongly closed commutative subspace lattices.
- [1] W. B. Arveson, Operator algebras and invariant subspaces, Ann. of Math. (2) 100 (1974), 433-532. MR 0365167 (51:1420)
- [2] K. R. Davidson, Commutative subspace lattices, Indiana Univ. Math. J. 27 (1978), 479-490. MR 0482264 (58:2340)
- [3] V. S. Shulman, Projection lattices in Hilbert space, Functional Anal. Appl. 23 (1990), 158-159; translation of Funkcional. Anal. i Priložen. 23 (1989), 86-89. MR 1011372 (90h:47084)
Retrieve articles in Proceedings of the American Mathematical Society with MSC: 47D25, 47A15
Retrieve articles in all journals with MSC: 47D25, 47A15
Additional Information
DOI:
https://doi.org/10.1090/S0002-9939-1992-1087464-3
Article copyright:
© Copyright 1992
American Mathematical Society